Properties

Label 2-184-184.107-c1-0-1
Degree $2$
Conductor $184$
Sign $0.402 - 0.915i$
Analytic cond. $1.46924$
Root an. cond. $1.21212$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.40 − 0.121i)2-s + (0.708 + 1.55i)3-s + (1.97 + 0.342i)4-s + (0.680 + 0.785i)5-s + (−0.810 − 2.27i)6-s + (1.52 + 0.978i)7-s + (−2.73 − 0.722i)8-s + (0.0576 − 0.0665i)9-s + (−0.863 − 1.18i)10-s + (−2.78 + 0.400i)11-s + (0.864 + 3.30i)12-s + (1.06 + 1.66i)13-s + (−2.02 − 1.56i)14-s + (−0.736 + 1.61i)15-s + (3.76 + 1.35i)16-s + (−0.326 − 1.11i)17-s + ⋯
L(s)  = 1  + (−0.996 − 0.0859i)2-s + (0.409 + 0.896i)3-s + (0.985 + 0.171i)4-s + (0.304 + 0.351i)5-s + (−0.330 − 0.928i)6-s + (0.575 + 0.369i)7-s + (−0.966 − 0.255i)8-s + (0.0192 − 0.0221i)9-s + (−0.273 − 0.376i)10-s + (−0.840 + 0.120i)11-s + (0.249 + 0.953i)12-s + (0.296 + 0.461i)13-s + (−0.541 − 0.418i)14-s + (−0.190 + 0.416i)15-s + (0.941 + 0.337i)16-s + (−0.0791 − 0.269i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.402 - 0.915i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 184 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.402 - 0.915i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(184\)    =    \(2^{3} \cdot 23\)
Sign: $0.402 - 0.915i$
Analytic conductor: \(1.46924\)
Root analytic conductor: \(1.21212\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{184} (107, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 184,\ (\ :1/2),\ 0.402 - 0.915i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.790902 + 0.516229i\)
\(L(\frac12)\) \(\approx\) \(0.790902 + 0.516229i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.40 + 0.121i)T \)
23 \( 1 + (-2.59 - 4.03i)T \)
good3 \( 1 + (-0.708 - 1.55i)T + (-1.96 + 2.26i)T^{2} \)
5 \( 1 + (-0.680 - 0.785i)T + (-0.711 + 4.94i)T^{2} \)
7 \( 1 + (-1.52 - 0.978i)T + (2.90 + 6.36i)T^{2} \)
11 \( 1 + (2.78 - 0.400i)T + (10.5 - 3.09i)T^{2} \)
13 \( 1 + (-1.06 - 1.66i)T + (-5.40 + 11.8i)T^{2} \)
17 \( 1 + (0.326 + 1.11i)T + (-14.3 + 9.19i)T^{2} \)
19 \( 1 + (1.13 - 3.86i)T + (-15.9 - 10.2i)T^{2} \)
29 \( 1 + (0.543 + 1.85i)T + (-24.3 + 15.6i)T^{2} \)
31 \( 1 + (3.29 + 1.50i)T + (20.3 + 23.4i)T^{2} \)
37 \( 1 + (-0.398 + 0.460i)T + (-5.26 - 36.6i)T^{2} \)
41 \( 1 + (4.94 + 5.70i)T + (-5.83 + 40.5i)T^{2} \)
43 \( 1 + (-3.20 + 1.46i)T + (28.1 - 32.4i)T^{2} \)
47 \( 1 + 11.3iT - 47T^{2} \)
53 \( 1 + (-0.454 - 0.291i)T + (22.0 + 48.2i)T^{2} \)
59 \( 1 + (8.00 - 5.14i)T + (24.5 - 53.6i)T^{2} \)
61 \( 1 + (-5.76 + 12.6i)T + (-39.9 - 46.1i)T^{2} \)
67 \( 1 + (-7.52 - 1.08i)T + (64.2 + 18.8i)T^{2} \)
71 \( 1 + (-8.75 - 1.25i)T + (68.1 + 20.0i)T^{2} \)
73 \( 1 + (-6.33 - 1.85i)T + (61.4 + 39.4i)T^{2} \)
79 \( 1 + (4.58 - 2.94i)T + (32.8 - 71.8i)T^{2} \)
83 \( 1 + (0.507 + 0.439i)T + (11.8 + 82.1i)T^{2} \)
89 \( 1 + (-7.31 + 3.33i)T + (58.2 - 67.2i)T^{2} \)
97 \( 1 + (2.21 - 1.92i)T + (13.8 - 96.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.55700403267791870914160472663, −11.45965540582407799767412393266, −10.53051436507776950807448121441, −9.831624487490309084646251895676, −8.918549559499523048609760629403, −8.018763214963181501758243965994, −6.77721165466533107314524885604, −5.36185889157516530811034214346, −3.65611200613206499275531210440, −2.16523256141015484501356362748, 1.29576914661183492010839906178, 2.69683366725616205396610700060, 5.07999656532175739976692894531, 6.54450414651520058140960269940, 7.57610237440975788435241154764, 8.241368988054733480833920734584, 9.192242395700548417026010105083, 10.53772944133644432921299984981, 11.13288583808368348928316850515, 12.63169954476927584857160450193

Graph of the $Z$-function along the critical line