Properties

Label 2-184-184.101-c1-0-18
Degree $2$
Conductor $184$
Sign $-0.244 + 0.969i$
Analytic cond. $1.46924$
Root an. cond. $1.21212$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.39 − 0.236i)2-s + (1.77 − 1.53i)3-s + (1.88 + 0.660i)4-s + (−3.72 + 0.536i)5-s + (−2.83 + 1.72i)6-s + (1.80 − 3.95i)7-s + (−2.47 − 1.36i)8-s + (0.356 − 2.48i)9-s + (5.32 + 0.136i)10-s + (0.791 − 2.69i)11-s + (4.36 − 1.72i)12-s + (−1.31 + 0.602i)13-s + (−3.45 + 5.08i)14-s + (−5.79 + 6.68i)15-s + (3.12 + 2.49i)16-s + (0.426 + 0.274i)17-s + ⋯
L(s)  = 1  + (−0.985 − 0.167i)2-s + (1.02 − 0.887i)3-s + (0.943 + 0.330i)4-s + (−1.66 + 0.239i)5-s + (−1.15 + 0.703i)6-s + (0.682 − 1.49i)7-s + (−0.875 − 0.483i)8-s + (0.118 − 0.826i)9-s + (1.68 + 0.0430i)10-s + (0.238 − 0.812i)11-s + (1.25 − 0.499i)12-s + (−0.365 + 0.167i)13-s + (−0.923 + 1.35i)14-s + (−1.49 + 1.72i)15-s + (0.781 + 0.623i)16-s + (0.103 + 0.0664i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.244 + 0.969i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 184 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.244 + 0.969i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(184\)    =    \(2^{3} \cdot 23\)
Sign: $-0.244 + 0.969i$
Analytic conductor: \(1.46924\)
Root analytic conductor: \(1.21212\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{184} (101, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 184,\ (\ :1/2),\ -0.244 + 0.969i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.510244 - 0.654719i\)
\(L(\frac12)\) \(\approx\) \(0.510244 - 0.654719i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.39 + 0.236i)T \)
23 \( 1 + (-4.04 + 2.57i)T \)
good3 \( 1 + (-1.77 + 1.53i)T + (0.426 - 2.96i)T^{2} \)
5 \( 1 + (3.72 - 0.536i)T + (4.79 - 1.40i)T^{2} \)
7 \( 1 + (-1.80 + 3.95i)T + (-4.58 - 5.29i)T^{2} \)
11 \( 1 + (-0.791 + 2.69i)T + (-9.25 - 5.94i)T^{2} \)
13 \( 1 + (1.31 - 0.602i)T + (8.51 - 9.82i)T^{2} \)
17 \( 1 + (-0.426 - 0.274i)T + (7.06 + 15.4i)T^{2} \)
19 \( 1 + (1.09 + 1.69i)T + (-7.89 + 17.2i)T^{2} \)
29 \( 1 + (-0.637 + 0.991i)T + (-12.0 - 26.3i)T^{2} \)
31 \( 1 + (5.28 - 6.09i)T + (-4.41 - 30.6i)T^{2} \)
37 \( 1 + (-1.78 - 0.256i)T + (35.5 + 10.4i)T^{2} \)
41 \( 1 + (-1.06 - 7.38i)T + (-39.3 + 11.5i)T^{2} \)
43 \( 1 + (-0.318 + 0.275i)T + (6.11 - 42.5i)T^{2} \)
47 \( 1 - 11.5T + 47T^{2} \)
53 \( 1 + (-8.99 - 4.10i)T + (34.7 + 40.0i)T^{2} \)
59 \( 1 + (1.14 - 0.524i)T + (38.6 - 44.5i)T^{2} \)
61 \( 1 + (-6.78 - 5.87i)T + (8.68 + 60.3i)T^{2} \)
67 \( 1 + (-0.439 - 1.49i)T + (-56.3 + 36.2i)T^{2} \)
71 \( 1 + (3.81 - 1.11i)T + (59.7 - 38.3i)T^{2} \)
73 \( 1 + (3.83 - 2.46i)T + (30.3 - 66.4i)T^{2} \)
79 \( 1 + (4.36 + 9.55i)T + (-51.7 + 59.7i)T^{2} \)
83 \( 1 + (-9.43 - 1.35i)T + (79.6 + 23.3i)T^{2} \)
89 \( 1 + (7.96 + 9.18i)T + (-12.6 + 88.0i)T^{2} \)
97 \( 1 + (-0.199 - 1.38i)T + (-93.0 + 27.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.14691753501689001419297597577, −11.17673832554892950942517769401, −10.59470999652371033830444432748, −8.833035481878164029821331154883, −8.197749814376184518659709564270, −7.33606511425657952778015565659, −7.01739437251957169834949443604, −4.11602438998984778848948228590, −2.98170546855744057490873293396, −0.981613584109564314594969330588, 2.45892038693358315474948179129, 3.90691848289182562568983020548, 5.29784397652168731516197177322, 7.30731053988834516464796706579, 8.128618000307683844892071856822, 8.851780107659473881002823456184, 9.490952260916463506256243620033, 10.84648775935111453860366795454, 11.81511885609027282937056113349, 12.40138404178706666680570836575

Graph of the $Z$-function along the critical line