Properties

Label 2-184-184.101-c1-0-17
Degree $2$
Conductor $184$
Sign $0.952 - 0.305i$
Analytic cond. $1.46924$
Root an. cond. $1.21212$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.0549 + 1.41i)2-s + (1.56 − 1.35i)3-s + (−1.99 + 0.155i)4-s + (1.30 − 0.188i)5-s + (1.99 + 2.13i)6-s + (1.93 − 4.22i)7-s + (−0.328 − 2.80i)8-s + (0.180 − 1.25i)9-s + (0.337 + 1.83i)10-s + (−0.917 + 3.12i)11-s + (−2.90 + 2.94i)12-s + (−4.99 + 2.28i)13-s + (6.08 + 2.49i)14-s + (1.78 − 2.06i)15-s + (3.95 − 0.619i)16-s + (3.05 + 1.96i)17-s + ⋯
L(s)  = 1  + (0.0388 + 0.999i)2-s + (0.901 − 0.781i)3-s + (−0.996 + 0.0776i)4-s + (0.584 − 0.0840i)5-s + (0.815 + 0.870i)6-s + (0.729 − 1.59i)7-s + (−0.116 − 0.993i)8-s + (0.0602 − 0.419i)9-s + (0.106 + 0.581i)10-s + (−0.276 + 0.941i)11-s + (−0.838 + 0.849i)12-s + (−1.38 + 0.632i)13-s + (1.62 + 0.667i)14-s + (0.461 − 0.532i)15-s + (0.987 − 0.154i)16-s + (0.741 + 0.476i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.952 - 0.305i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 184 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.952 - 0.305i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(184\)    =    \(2^{3} \cdot 23\)
Sign: $0.952 - 0.305i$
Analytic conductor: \(1.46924\)
Root analytic conductor: \(1.21212\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{184} (101, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 184,\ (\ :1/2),\ 0.952 - 0.305i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.50834 + 0.236040i\)
\(L(\frac12)\) \(\approx\) \(1.50834 + 0.236040i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.0549 - 1.41i)T \)
23 \( 1 + (4.20 - 2.30i)T \)
good3 \( 1 + (-1.56 + 1.35i)T + (0.426 - 2.96i)T^{2} \)
5 \( 1 + (-1.30 + 0.188i)T + (4.79 - 1.40i)T^{2} \)
7 \( 1 + (-1.93 + 4.22i)T + (-4.58 - 5.29i)T^{2} \)
11 \( 1 + (0.917 - 3.12i)T + (-9.25 - 5.94i)T^{2} \)
13 \( 1 + (4.99 - 2.28i)T + (8.51 - 9.82i)T^{2} \)
17 \( 1 + (-3.05 - 1.96i)T + (7.06 + 15.4i)T^{2} \)
19 \( 1 + (-1.11 - 1.73i)T + (-7.89 + 17.2i)T^{2} \)
29 \( 1 + (0.0805 - 0.125i)T + (-12.0 - 26.3i)T^{2} \)
31 \( 1 + (-5.26 + 6.07i)T + (-4.41 - 30.6i)T^{2} \)
37 \( 1 + (6.57 + 0.945i)T + (35.5 + 10.4i)T^{2} \)
41 \( 1 + (0.661 + 4.60i)T + (-39.3 + 11.5i)T^{2} \)
43 \( 1 + (4.20 - 3.64i)T + (6.11 - 42.5i)T^{2} \)
47 \( 1 - 2.17T + 47T^{2} \)
53 \( 1 + (1.56 + 0.715i)T + (34.7 + 40.0i)T^{2} \)
59 \( 1 + (-10.3 + 4.71i)T + (38.6 - 44.5i)T^{2} \)
61 \( 1 + (-0.788 - 0.683i)T + (8.68 + 60.3i)T^{2} \)
67 \( 1 + (1.96 + 6.68i)T + (-56.3 + 36.2i)T^{2} \)
71 \( 1 + (-4.09 + 1.20i)T + (59.7 - 38.3i)T^{2} \)
73 \( 1 + (5.31 - 3.41i)T + (30.3 - 66.4i)T^{2} \)
79 \( 1 + (-3.36 - 7.37i)T + (-51.7 + 59.7i)T^{2} \)
83 \( 1 + (-3.79 - 0.545i)T + (79.6 + 23.3i)T^{2} \)
89 \( 1 + (5.49 + 6.34i)T + (-12.6 + 88.0i)T^{2} \)
97 \( 1 + (-2.47 - 17.2i)T + (-93.0 + 27.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.12689515308676582851796547657, −12.08738747599668364930989458305, −10.18745618440756934362216597117, −9.636024086339282250251673213531, −8.056735832622834849502628517768, −7.60191994879877007253767983778, −6.84688959636374389375122223066, −5.18692664979833130852998198994, −4.01088502958525951979002210435, −1.80232905808029817814668872454, 2.36821447514302749993815769366, 3.11488870800183240244803961484, 4.87195490729449040470747195852, 5.66662552735158118526329003674, 8.143595524445108819031492678592, 8.745417702757169641582153210102, 9.716311512037980165365007431843, 10.31370665940268986569239065180, 11.76359248449388923406812130780, 12.26885852888743804711012240447

Graph of the $Z$-function along the critical line