Properties

Label 2-18240-1.1-c1-0-42
Degree $2$
Conductor $18240$
Sign $-1$
Analytic cond. $145.647$
Root an. cond. $12.0684$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s − 4·7-s + 9-s − 2·13-s − 15-s + 2·17-s − 19-s − 4·21-s + 25-s + 27-s + 6·29-s − 8·31-s + 4·35-s − 2·37-s − 2·39-s + 6·41-s − 8·43-s − 45-s + 8·47-s + 9·49-s + 2·51-s + 10·53-s − 57-s + 12·59-s + 2·61-s − 4·63-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s − 1.51·7-s + 1/3·9-s − 0.554·13-s − 0.258·15-s + 0.485·17-s − 0.229·19-s − 0.872·21-s + 1/5·25-s + 0.192·27-s + 1.11·29-s − 1.43·31-s + 0.676·35-s − 0.328·37-s − 0.320·39-s + 0.937·41-s − 1.21·43-s − 0.149·45-s + 1.16·47-s + 9/7·49-s + 0.280·51-s + 1.37·53-s − 0.132·57-s + 1.56·59-s + 0.256·61-s − 0.503·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 18240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(18240\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 19\)
Sign: $-1$
Analytic conductor: \(145.647\)
Root analytic conductor: \(12.0684\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 18240,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
19 \( 1 + T \)
good7 \( 1 + 4 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 - 10 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 + 10 T + p T^{2} \)
97 \( 1 - 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.87766283303192, −15.68744512267124, −14.87723546833326, −14.54813875318574, −13.83266506829141, −13.25913387426166, −12.79312557989403, −12.26288462490071, −11.86288665701360, −10.94343291036844, −10.34030771647577, −9.852110294904621, −9.355976751480663, −8.722301150775336, −8.206881154234096, −7.307809838265882, −7.064194477012753, −6.350108702318736, −5.622576779192431, −4.909462244334021, −3.912126853355947, −3.631338029744285, −2.801411818131566, −2.268689270581132, −0.9911601774516588, 0, 0.9911601774516588, 2.268689270581132, 2.801411818131566, 3.631338029744285, 3.912126853355947, 4.909462244334021, 5.622576779192431, 6.350108702318736, 7.064194477012753, 7.307809838265882, 8.206881154234096, 8.722301150775336, 9.355976751480663, 9.852110294904621, 10.34030771647577, 10.94343291036844, 11.86288665701360, 12.26288462490071, 12.79312557989403, 13.25913387426166, 13.83266506829141, 14.54813875318574, 14.87723546833326, 15.68744512267124, 15.87766283303192

Graph of the $Z$-function along the critical line