L(s) = 1 | + (0.5 − 0.866i)3-s + (−0.499 − 0.866i)9-s − 1.73i·11-s + (−0.5 + 0.866i)19-s + (0.5 − 0.866i)25-s − 0.999·27-s + (−1.49 − 0.866i)33-s + (0.5 + 0.866i)41-s + (−1 − 1.73i)43-s + 49-s + (0.499 + 0.866i)57-s + (0.5 + 0.866i)59-s + (1.5 + 0.866i)67-s + (−0.5 − 0.866i)73-s + (−0.499 − 0.866i)75-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)3-s + (−0.499 − 0.866i)9-s − 1.73i·11-s + (−0.5 + 0.866i)19-s + (0.5 − 0.866i)25-s − 0.999·27-s + (−1.49 − 0.866i)33-s + (0.5 + 0.866i)41-s + (−1 − 1.73i)43-s + 49-s + (0.499 + 0.866i)57-s + (0.5 + 0.866i)59-s + (1.5 + 0.866i)67-s + (−0.5 − 0.866i)73-s + (−0.499 − 0.866i)75-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1824 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0977 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1824 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0977 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.251318916\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.251318916\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 19 | \( 1 + (0.5 - 0.866i)T \) |
good | 5 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 7 | \( 1 - T^{2} \) |
| 11 | \( 1 + 1.73iT - T^{2} \) |
| 13 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-1.5 - 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 - 1.73iT - T^{2} \) |
| 89 | \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.848391795990279290429726417054, −8.507527960404828479909677025697, −7.81609023756731912786921364390, −6.83488123569949152808659891811, −6.13938727317749822545592021364, −5.45973250995101557653821515948, −4.00890911363620267570003272316, −3.21087172364731855190408569435, −2.24741594815423850890790132107, −0.903763983401614284097119657853,
1.90843106216821884702046095271, 2.83386487098021772162606038074, 3.95285800793406209613535748281, 4.69760736040101314655235262386, 5.31790153817865953548298865192, 6.62121622685357017176945508634, 7.35763232474525984024877821048, 8.169695131621873464890440710820, 9.093302798590917895492902984088, 9.564428256479058022685684434999