L(s) = 1 | + (−0.5 − 0.866i)3-s + (−1.41 − 2.44i)5-s + 1.82·7-s + (−0.499 + 0.866i)9-s + 4.82·11-s + (1.91 − 3.31i)13-s + (−1.41 + 2.44i)15-s + (2.41 + 4.18i)17-s + (−4 − 1.73i)19-s + (−0.914 − 1.58i)21-s + (3 − 5.19i)23-s + (−1.49 + 2.59i)25-s + 0.999·27-s + (−0.414 + 0.717i)29-s + 5.82·31-s + ⋯ |
L(s) = 1 | + (−0.288 − 0.499i)3-s + (−0.632 − 1.09i)5-s + 0.691·7-s + (−0.166 + 0.288i)9-s + 1.45·11-s + (0.530 − 0.919i)13-s + (−0.365 + 0.632i)15-s + (0.585 + 1.01i)17-s + (−0.917 − 0.397i)19-s + (−0.199 − 0.345i)21-s + (0.625 − 1.08i)23-s + (−0.299 + 0.519i)25-s + 0.192·27-s + (−0.0769 + 0.133i)29-s + 1.04·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1824 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0977 + 0.995i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1824 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0977 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.680546863\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.680546863\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 19 | \( 1 + (4 + 1.73i)T \) |
good | 5 | \( 1 + (1.41 + 2.44i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 - 1.82T + 7T^{2} \) |
| 11 | \( 1 - 4.82T + 11T^{2} \) |
| 13 | \( 1 + (-1.91 + 3.31i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-2.41 - 4.18i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (-3 + 5.19i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (0.414 - 0.717i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 5.82T + 31T^{2} \) |
| 37 | \( 1 - 11.8T + 37T^{2} \) |
| 41 | \( 1 + (-5.65 - 9.79i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.5 - 0.866i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (3.82 - 6.63i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (5.82 - 10.0i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (6.82 + 11.8i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.08 + 3.61i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.5 + 11.2i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (7.07 + 12.2i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (2.5 + 4.33i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (2.91 + 5.04i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 0.828T + 83T^{2} \) |
| 89 | \( 1 + (4 - 6.92i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (8.65 + 14.9i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.845076120659365044711357469618, −8.084394821973971940056253207313, −7.88705028643887448885910083129, −6.38768619298418151305146160876, −6.10157305394970534832558486900, −4.60253482062301038499148814845, −4.48135792215547657842119113271, −3.10515571488732161494668357063, −1.51496850190413102412707814854, −0.805849509292456709380277384698,
1.27496253422274264087423914952, 2.72124184797562129600787527929, 3.86667794064398268417549298947, 4.22745575085485749481442811833, 5.44051822463823072948121872903, 6.43537865867438145608567024827, 6.98671686632297525853016175456, 7.82193306959276688169879014264, 8.789158085890425785287845405176, 9.472586830882769665161255878243