Properties

Label 2-1824-12.11-c1-0-66
Degree $2$
Conductor $1824$
Sign $-0.997 - 0.0640i$
Analytic cond. $14.5647$
Root an. cond. $3.81637$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.30 − 1.14i)3-s − 3.53i·5-s + 3.09i·7-s + (0.383 − 2.97i)9-s − 5.60·11-s + 0.378·13-s + (−4.04 − 4.59i)15-s + 1.90i·17-s + i·19-s + (3.54 + 4.02i)21-s − 7.91·23-s − 7.48·25-s + (−2.90 − 4.30i)27-s − 9.18i·29-s − 6.82i·31-s + ⋯
L(s)  = 1  + (0.750 − 0.660i)3-s − 1.58i·5-s + 1.17i·7-s + (0.127 − 0.991i)9-s − 1.69·11-s + 0.105·13-s + (−1.04 − 1.18i)15-s + 0.463i·17-s + 0.229i·19-s + (0.772 + 0.878i)21-s − 1.64·23-s − 1.49·25-s + (−0.559 − 0.829i)27-s − 1.70i·29-s − 1.22i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1824 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.997 - 0.0640i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1824 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.997 - 0.0640i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1824\)    =    \(2^{5} \cdot 3 \cdot 19\)
Sign: $-0.997 - 0.0640i$
Analytic conductor: \(14.5647\)
Root analytic conductor: \(3.81637\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1824} (191, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1824,\ (\ :1/2),\ -0.997 - 0.0640i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.003505337\)
\(L(\frac12)\) \(\approx\) \(1.003505337\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-1.30 + 1.14i)T \)
19 \( 1 - iT \)
good5 \( 1 + 3.53iT - 5T^{2} \)
7 \( 1 - 3.09iT - 7T^{2} \)
11 \( 1 + 5.60T + 11T^{2} \)
13 \( 1 - 0.378T + 13T^{2} \)
17 \( 1 - 1.90iT - 17T^{2} \)
23 \( 1 + 7.91T + 23T^{2} \)
29 \( 1 + 9.18iT - 29T^{2} \)
31 \( 1 + 6.82iT - 31T^{2} \)
37 \( 1 + 2.82T + 37T^{2} \)
41 \( 1 - 0.521iT - 41T^{2} \)
43 \( 1 - 6.60iT - 43T^{2} \)
47 \( 1 + 11.2T + 47T^{2} \)
53 \( 1 + 8.42iT - 53T^{2} \)
59 \( 1 - 10.7T + 59T^{2} \)
61 \( 1 + 4.72T + 61T^{2} \)
67 \( 1 + 9.11iT - 67T^{2} \)
71 \( 1 - 1.69T + 71T^{2} \)
73 \( 1 + 2.30T + 73T^{2} \)
79 \( 1 - 5.74iT - 79T^{2} \)
83 \( 1 - 8.83T + 83T^{2} \)
89 \( 1 - 13.1iT - 89T^{2} \)
97 \( 1 - 10.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.595519988308601264035593741596, −8.028317645991688376607081362566, −7.901748938903643633134524179777, −6.24242781990522866349747659253, −5.68629771349235996095555519857, −4.83273181775813261140822830213, −3.79990836041447912710540227406, −2.46105588754735542602416848448, −1.87067910407148757270171437083, −0.30064156802148288787926834841, 2.07004128890514300794244761039, 3.05219911690984251144250914860, 3.53855433208543009007520722425, 4.62634294341667342990328421914, 5.52980588684303518529192122834, 6.80302744652283305149786745522, 7.36093280138969528834625965658, 7.933174548901845049045476222336, 8.847486775521406206839454186758, 10.10037033785201394771717223652

Graph of the $Z$-function along the critical line