Properties

Label 2-1824-1.1-c1-0-19
Degree $2$
Conductor $1824$
Sign $1$
Analytic cond. $14.5647$
Root an. cond. $3.81637$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 3.11·5-s − 1.67·7-s + 9-s + 2.32·11-s + 4.78·13-s + 3.11·15-s + 0.327·17-s + 19-s − 1.67·21-s − 3.43·23-s + 4.67·25-s + 27-s + 1.34·29-s − 6.78·31-s + 2.32·33-s − 5.20·35-s + 6.09·37-s + 4.78·39-s − 4.22·41-s + 7.89·43-s + 3.11·45-s − 0.455·47-s − 4.20·49-s + 0.327·51-s − 2·53-s + 7.23·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.39·5-s − 0.632·7-s + 0.333·9-s + 0.701·11-s + 1.32·13-s + 0.803·15-s + 0.0793·17-s + 0.229·19-s − 0.365·21-s − 0.716·23-s + 0.934·25-s + 0.192·27-s + 0.249·29-s − 1.21·31-s + 0.405·33-s − 0.879·35-s + 1.00·37-s + 0.765·39-s − 0.659·41-s + 1.20·43-s + 0.463·45-s − 0.0664·47-s − 0.600·49-s + 0.0458·51-s − 0.274·53-s + 0.975·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1824 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1824 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1824\)    =    \(2^{5} \cdot 3 \cdot 19\)
Sign: $1$
Analytic conductor: \(14.5647\)
Root analytic conductor: \(3.81637\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1824,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.879666071\)
\(L(\frac12)\) \(\approx\) \(2.879666071\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
19 \( 1 - T \)
good5 \( 1 - 3.11T + 5T^{2} \)
7 \( 1 + 1.67T + 7T^{2} \)
11 \( 1 - 2.32T + 11T^{2} \)
13 \( 1 - 4.78T + 13T^{2} \)
17 \( 1 - 0.327T + 17T^{2} \)
23 \( 1 + 3.43T + 23T^{2} \)
29 \( 1 - 1.34T + 29T^{2} \)
31 \( 1 + 6.78T + 31T^{2} \)
37 \( 1 - 6.09T + 37T^{2} \)
41 \( 1 + 4.22T + 41T^{2} \)
43 \( 1 - 7.89T + 43T^{2} \)
47 \( 1 + 0.455T + 47T^{2} \)
53 \( 1 + 2T + 53T^{2} \)
59 \( 1 - 3.34T + 59T^{2} \)
61 \( 1 + 5.89T + 61T^{2} \)
67 \( 1 - 6.22T + 67T^{2} \)
71 \( 1 - 4.65T + 71T^{2} \)
73 \( 1 - 12.3T + 73T^{2} \)
79 \( 1 + 13.6T + 79T^{2} \)
83 \( 1 + 2.69T + 83T^{2} \)
89 \( 1 - 10T + 89T^{2} \)
97 \( 1 - 10.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.344356834634134179531708173620, −8.696524852006912032617898085906, −7.76649766875723728268130209141, −6.63864473209379577563717694209, −6.17312928960869861312856117319, −5.41253749452202698672436033935, −4.09298354906142466215754395150, −3.30598306096793786001204295192, −2.20685360789186848301359399299, −1.27049449540072372527048194429, 1.27049449540072372527048194429, 2.20685360789186848301359399299, 3.30598306096793786001204295192, 4.09298354906142466215754395150, 5.41253749452202698672436033935, 6.17312928960869861312856117319, 6.63864473209379577563717694209, 7.76649766875723728268130209141, 8.696524852006912032617898085906, 9.344356834634134179531708173620

Graph of the $Z$-function along the critical line