Properties

Label 2-1824-1.1-c1-0-15
Degree $2$
Conductor $1824$
Sign $1$
Analytic cond. $14.5647$
Root an. cond. $3.81637$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 0.681·5-s + 3.18·7-s + 9-s + 3.18·11-s + 1.49·13-s − 0.681·15-s − 1.18·17-s − 19-s + 3.18·21-s + 4.85·23-s − 4.53·25-s + 27-s + 8.37·29-s − 7.23·31-s + 3.18·33-s − 2.17·35-s + 1.49·37-s + 1.49·39-s − 3.36·41-s − 1.82·43-s − 0.681·45-s + 1.66·47-s + 3.17·49-s − 1.18·51-s + 12.7·53-s − 2.17·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.304·5-s + 1.20·7-s + 0.333·9-s + 0.961·11-s + 0.413·13-s − 0.175·15-s − 0.288·17-s − 0.229·19-s + 0.696·21-s + 1.01·23-s − 0.907·25-s + 0.192·27-s + 1.55·29-s − 1.29·31-s + 0.555·33-s − 0.367·35-s + 0.245·37-s + 0.238·39-s − 0.525·41-s − 0.278·43-s − 0.101·45-s + 0.242·47-s + 0.453·49-s − 0.166·51-s + 1.74·53-s − 0.293·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1824 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1824 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1824\)    =    \(2^{5} \cdot 3 \cdot 19\)
Sign: $1$
Analytic conductor: \(14.5647\)
Root analytic conductor: \(3.81637\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1824,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.554739983\)
\(L(\frac12)\) \(\approx\) \(2.554739983\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
19 \( 1 + T \)
good5 \( 1 + 0.681T + 5T^{2} \)
7 \( 1 - 3.18T + 7T^{2} \)
11 \( 1 - 3.18T + 11T^{2} \)
13 \( 1 - 1.49T + 13T^{2} \)
17 \( 1 + 1.18T + 17T^{2} \)
23 \( 1 - 4.85T + 23T^{2} \)
29 \( 1 - 8.37T + 29T^{2} \)
31 \( 1 + 7.23T + 31T^{2} \)
37 \( 1 - 1.49T + 37T^{2} \)
41 \( 1 + 3.36T + 41T^{2} \)
43 \( 1 + 1.82T + 43T^{2} \)
47 \( 1 - 1.66T + 47T^{2} \)
53 \( 1 - 12.7T + 53T^{2} \)
59 \( 1 - 4.34T + 59T^{2} \)
61 \( 1 + 2.55T + 61T^{2} \)
67 \( 1 + 9.36T + 67T^{2} \)
71 \( 1 + 4.34T + 71T^{2} \)
73 \( 1 - 5.53T + 73T^{2} \)
79 \( 1 + 8.24T + 79T^{2} \)
83 \( 1 + 83T^{2} \)
89 \( 1 - 10.7T + 89T^{2} \)
97 \( 1 - 12.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.863610340791652382944430730072, −8.694071138153838285990483373817, −7.73442617824641455865092999143, −7.06806715016470383192350919342, −6.12418269957408381711678124821, −5.00697943617052551020751261164, −4.25228537545059367925802902962, −3.44024832201114660808782879349, −2.16794563669697272490400730529, −1.18032222196348930112380877972, 1.18032222196348930112380877972, 2.16794563669697272490400730529, 3.44024832201114660808782879349, 4.25228537545059367925802902962, 5.00697943617052551020751261164, 6.12418269957408381711678124821, 7.06806715016470383192350919342, 7.73442617824641455865092999143, 8.694071138153838285990483373817, 8.863610340791652382944430730072

Graph of the $Z$-function along the critical line