Properties

Label 2-182-1.1-c7-0-8
Degree $2$
Conductor $182$
Sign $1$
Analytic cond. $56.8540$
Root an. cond. $7.54016$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s + 10.9·3-s + 64·4-s + 82.9·5-s − 87.5·6-s − 343·7-s − 512·8-s − 2.06e3·9-s − 663.·10-s − 1.08e3·11-s + 700.·12-s − 2.19e3·13-s + 2.74e3·14-s + 907.·15-s + 4.09e3·16-s − 2.84e4·17-s + 1.65e4·18-s + 4.89e4·19-s + 5.30e3·20-s − 3.75e3·21-s + 8.71e3·22-s + 5.73e4·23-s − 5.60e3·24-s − 7.12e4·25-s + 1.75e4·26-s − 4.65e4·27-s − 2.19e4·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.233·3-s + 0.5·4-s + 0.296·5-s − 0.165·6-s − 0.377·7-s − 0.353·8-s − 0.945·9-s − 0.209·10-s − 0.246·11-s + 0.116·12-s − 0.277·13-s + 0.267·14-s + 0.0694·15-s + 0.250·16-s − 1.40·17-s + 0.668·18-s + 1.63·19-s + 0.148·20-s − 0.0884·21-s + 0.174·22-s + 0.983·23-s − 0.0827·24-s − 0.912·25-s + 0.196·26-s − 0.455·27-s − 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 182 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 182 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(182\)    =    \(2 \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(56.8540\)
Root analytic conductor: \(7.54016\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 182,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(1.222912145\)
\(L(\frac12)\) \(\approx\) \(1.222912145\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 8T \)
7 \( 1 + 343T \)
13 \( 1 + 2.19e3T \)
good3 \( 1 - 10.9T + 2.18e3T^{2} \)
5 \( 1 - 82.9T + 7.81e4T^{2} \)
11 \( 1 + 1.08e3T + 1.94e7T^{2} \)
17 \( 1 + 2.84e4T + 4.10e8T^{2} \)
19 \( 1 - 4.89e4T + 8.93e8T^{2} \)
23 \( 1 - 5.73e4T + 3.40e9T^{2} \)
29 \( 1 - 1.41e5T + 1.72e10T^{2} \)
31 \( 1 - 1.05e5T + 2.75e10T^{2} \)
37 \( 1 + 8.72e4T + 9.49e10T^{2} \)
41 \( 1 + 7.88e5T + 1.94e11T^{2} \)
43 \( 1 - 2.95e5T + 2.71e11T^{2} \)
47 \( 1 - 9.43e5T + 5.06e11T^{2} \)
53 \( 1 + 5.36e5T + 1.17e12T^{2} \)
59 \( 1 - 1.21e6T + 2.48e12T^{2} \)
61 \( 1 + 1.04e6T + 3.14e12T^{2} \)
67 \( 1 - 2.79e6T + 6.06e12T^{2} \)
71 \( 1 + 3.14e6T + 9.09e12T^{2} \)
73 \( 1 - 5.61e6T + 1.10e13T^{2} \)
79 \( 1 + 1.04e6T + 1.92e13T^{2} \)
83 \( 1 - 1.13e6T + 2.71e13T^{2} \)
89 \( 1 - 8.08e6T + 4.42e13T^{2} \)
97 \( 1 - 1.32e7T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.26797392154325512685136538072, −10.18380314821059751738022015683, −9.267055928223956064322119256844, −8.491579894680586141102123520567, −7.33560048200861937219217248305, −6.27109244323100305737588058530, −5.07362868670274311636466342307, −3.24471071490612304181758284026, −2.25087642962469931783479832529, −0.63990171195041374276192027935, 0.63990171195041374276192027935, 2.25087642962469931783479832529, 3.24471071490612304181758284026, 5.07362868670274311636466342307, 6.27109244323100305737588058530, 7.33560048200861937219217248305, 8.491579894680586141102123520567, 9.267055928223956064322119256844, 10.18380314821059751738022015683, 11.26797392154325512685136538072

Graph of the $Z$-function along the critical line