Properties

Label 2-182-1.1-c7-0-39
Degree $2$
Conductor $182$
Sign $-1$
Analytic cond. $56.8540$
Root an. cond. $7.54016$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s + 5.57·3-s + 64·4-s + 202.·5-s + 44.5·6-s + 343·7-s + 512·8-s − 2.15e3·9-s + 1.61e3·10-s − 7.17e3·11-s + 356.·12-s + 2.19e3·13-s + 2.74e3·14-s + 1.12e3·15-s + 4.09e3·16-s − 2.04e4·17-s − 1.72e4·18-s − 2.49e4·19-s + 1.29e4·20-s + 1.91e3·21-s − 5.73e4·22-s − 4.75e4·23-s + 2.85e3·24-s − 3.72e4·25-s + 1.75e4·26-s − 2.41e4·27-s + 2.19e4·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.119·3-s + 0.5·4-s + 0.723·5-s + 0.0842·6-s + 0.377·7-s + 0.353·8-s − 0.985·9-s + 0.511·10-s − 1.62·11-s + 0.0595·12-s + 0.277·13-s + 0.267·14-s + 0.0861·15-s + 0.250·16-s − 1.01·17-s − 0.697·18-s − 0.833·19-s + 0.361·20-s + 0.0450·21-s − 1.14·22-s − 0.814·23-s + 0.0421·24-s − 0.476·25-s + 0.196·26-s − 0.236·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 182 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 182 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(182\)    =    \(2 \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(56.8540\)
Root analytic conductor: \(7.54016\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 182,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 8T \)
7 \( 1 - 343T \)
13 \( 1 - 2.19e3T \)
good3 \( 1 - 5.57T + 2.18e3T^{2} \)
5 \( 1 - 202.T + 7.81e4T^{2} \)
11 \( 1 + 7.17e3T + 1.94e7T^{2} \)
17 \( 1 + 2.04e4T + 4.10e8T^{2} \)
19 \( 1 + 2.49e4T + 8.93e8T^{2} \)
23 \( 1 + 4.75e4T + 3.40e9T^{2} \)
29 \( 1 + 1.69e4T + 1.72e10T^{2} \)
31 \( 1 - 1.40e5T + 2.75e10T^{2} \)
37 \( 1 - 3.18e5T + 9.49e10T^{2} \)
41 \( 1 - 1.69e5T + 1.94e11T^{2} \)
43 \( 1 + 9.74e5T + 2.71e11T^{2} \)
47 \( 1 - 8.34e5T + 5.06e11T^{2} \)
53 \( 1 + 9.07e5T + 1.17e12T^{2} \)
59 \( 1 - 2.85e5T + 2.48e12T^{2} \)
61 \( 1 - 7.65e5T + 3.14e12T^{2} \)
67 \( 1 + 1.10e5T + 6.06e12T^{2} \)
71 \( 1 + 4.73e6T + 9.09e12T^{2} \)
73 \( 1 + 6.25e6T + 1.10e13T^{2} \)
79 \( 1 + 7.55e6T + 1.92e13T^{2} \)
83 \( 1 - 9.36e6T + 2.71e13T^{2} \)
89 \( 1 - 6.87e6T + 4.42e13T^{2} \)
97 \( 1 + 1.31e7T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.92189782728015444526392846040, −10.09182665156218400292802471161, −8.663499744614423501793244734839, −7.80205125615303642213397496759, −6.28697599321958993434131808798, −5.53419389157889640175379223909, −4.42956694516801084552287865809, −2.80989787631468106109488854796, −2.01621739991831994374551913532, 0, 2.01621739991831994374551913532, 2.80989787631468106109488854796, 4.42956694516801084552287865809, 5.53419389157889640175379223909, 6.28697599321958993434131808798, 7.80205125615303642213397496759, 8.663499744614423501793244734839, 10.09182665156218400292802471161, 10.92189782728015444526392846040

Graph of the $Z$-function along the critical line