Properties

Label 2-182-1.1-c7-0-38
Degree $2$
Conductor $182$
Sign $-1$
Analytic cond. $56.8540$
Root an. cond. $7.54016$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s + 33.7·3-s + 64·4-s − 351.·5-s + 269.·6-s + 343·7-s + 512·8-s − 1.04e3·9-s − 2.81e3·10-s + 761.·11-s + 2.15e3·12-s + 2.19e3·13-s + 2.74e3·14-s − 1.18e4·15-s + 4.09e3·16-s + 2.45e4·17-s − 8.39e3·18-s − 3.12e4·19-s − 2.25e4·20-s + 1.15e4·21-s + 6.09e3·22-s − 9.43e4·23-s + 1.72e4·24-s + 4.56e4·25-s + 1.75e4·26-s − 1.09e5·27-s + 2.19e4·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.721·3-s + 0.5·4-s − 1.25·5-s + 0.509·6-s + 0.377·7-s + 0.353·8-s − 0.480·9-s − 0.890·10-s + 0.172·11-s + 0.360·12-s + 0.277·13-s + 0.267·14-s − 0.907·15-s + 0.250·16-s + 1.20·17-s − 0.339·18-s − 1.04·19-s − 0.629·20-s + 0.272·21-s + 0.122·22-s − 1.61·23-s + 0.254·24-s + 0.584·25-s + 0.196·26-s − 1.06·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 182 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 182 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(182\)    =    \(2 \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(56.8540\)
Root analytic conductor: \(7.54016\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 182,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 8T \)
7 \( 1 - 343T \)
13 \( 1 - 2.19e3T \)
good3 \( 1 - 33.7T + 2.18e3T^{2} \)
5 \( 1 + 351.T + 7.81e4T^{2} \)
11 \( 1 - 761.T + 1.94e7T^{2} \)
17 \( 1 - 2.45e4T + 4.10e8T^{2} \)
19 \( 1 + 3.12e4T + 8.93e8T^{2} \)
23 \( 1 + 9.43e4T + 3.40e9T^{2} \)
29 \( 1 - 4.82e4T + 1.72e10T^{2} \)
31 \( 1 + 1.17e5T + 2.75e10T^{2} \)
37 \( 1 + 3.01e5T + 9.49e10T^{2} \)
41 \( 1 + 8.39e4T + 1.94e11T^{2} \)
43 \( 1 + 9.39e5T + 2.71e11T^{2} \)
47 \( 1 + 1.40e6T + 5.06e11T^{2} \)
53 \( 1 + 9.41e5T + 1.17e12T^{2} \)
59 \( 1 - 3.94e5T + 2.48e12T^{2} \)
61 \( 1 - 2.83e6T + 3.14e12T^{2} \)
67 \( 1 - 2.02e6T + 6.06e12T^{2} \)
71 \( 1 - 5.50e6T + 9.09e12T^{2} \)
73 \( 1 - 9.39e5T + 1.10e13T^{2} \)
79 \( 1 - 5.80e6T + 1.92e13T^{2} \)
83 \( 1 + 9.97e6T + 2.71e13T^{2} \)
89 \( 1 + 8.76e6T + 4.42e13T^{2} \)
97 \( 1 + 6.29e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.20896519331190384080134774287, −9.919929303700430192642906336939, −8.241595603086059044255475009542, −8.112013360934595606626934560125, −6.68646329342309694659004859733, −5.31891611198480726380991500319, −3.97081811479384076144051226984, −3.33491075063667943812289319916, −1.86533226246139937776432309410, 0, 1.86533226246139937776432309410, 3.33491075063667943812289319916, 3.97081811479384076144051226984, 5.31891611198480726380991500319, 6.68646329342309694659004859733, 8.112013360934595606626934560125, 8.241595603086059044255475009542, 9.919929303700430192642906336939, 11.20896519331190384080134774287

Graph of the $Z$-function along the critical line