Properties

Label 2-182-1.1-c7-0-29
Degree $2$
Conductor $182$
Sign $-1$
Analytic cond. $56.8540$
Root an. cond. $7.54016$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s − 44.7·3-s + 64·4-s − 46.8·5-s − 357.·6-s − 343·7-s + 512·8-s − 187.·9-s − 374.·10-s + 7.41e3·11-s − 2.86e3·12-s − 2.19e3·13-s − 2.74e3·14-s + 2.09e3·15-s + 4.09e3·16-s − 1.17e4·17-s − 1.49e3·18-s + 3.78e4·19-s − 2.99e3·20-s + 1.53e4·21-s + 5.93e4·22-s − 4.62e3·23-s − 2.28e4·24-s − 7.59e4·25-s − 1.75e4·26-s + 1.06e5·27-s − 2.19e4·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.956·3-s + 0.5·4-s − 0.167·5-s − 0.676·6-s − 0.377·7-s + 0.353·8-s − 0.0855·9-s − 0.118·10-s + 1.67·11-s − 0.478·12-s − 0.277·13-s − 0.267·14-s + 0.160·15-s + 0.250·16-s − 0.579·17-s − 0.0604·18-s + 1.26·19-s − 0.0837·20-s + 0.361·21-s + 1.18·22-s − 0.0792·23-s − 0.338·24-s − 0.971·25-s − 0.196·26-s + 1.03·27-s − 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 182 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 182 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(182\)    =    \(2 \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(56.8540\)
Root analytic conductor: \(7.54016\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 182,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 8T \)
7 \( 1 + 343T \)
13 \( 1 + 2.19e3T \)
good3 \( 1 + 44.7T + 2.18e3T^{2} \)
5 \( 1 + 46.8T + 7.81e4T^{2} \)
11 \( 1 - 7.41e3T + 1.94e7T^{2} \)
17 \( 1 + 1.17e4T + 4.10e8T^{2} \)
19 \( 1 - 3.78e4T + 8.93e8T^{2} \)
23 \( 1 + 4.62e3T + 3.40e9T^{2} \)
29 \( 1 + 1.47e5T + 1.72e10T^{2} \)
31 \( 1 - 7.08e4T + 2.75e10T^{2} \)
37 \( 1 + 4.34e5T + 9.49e10T^{2} \)
41 \( 1 - 4.81e5T + 1.94e11T^{2} \)
43 \( 1 + 6.32e5T + 2.71e11T^{2} \)
47 \( 1 - 2.90e4T + 5.06e11T^{2} \)
53 \( 1 + 1.71e6T + 1.17e12T^{2} \)
59 \( 1 + 5.39e5T + 2.48e12T^{2} \)
61 \( 1 - 1.31e6T + 3.14e12T^{2} \)
67 \( 1 + 2.09e6T + 6.06e12T^{2} \)
71 \( 1 + 5.34e6T + 9.09e12T^{2} \)
73 \( 1 + 4.48e6T + 1.10e13T^{2} \)
79 \( 1 - 1.47e6T + 1.92e13T^{2} \)
83 \( 1 + 7.74e6T + 2.71e13T^{2} \)
89 \( 1 + 9.55e6T + 4.42e13T^{2} \)
97 \( 1 - 3.44e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.39974399115241433116101889782, −10.01644107204152604978391482550, −8.944601932809223119112670553153, −7.33002626429302553046383607616, −6.39764210383932576193678897987, −5.58483105479448335724630362185, −4.37487355214088104207185141240, −3.25630789630917124445164591837, −1.49230760558791666162544992263, 0, 1.49230760558791666162544992263, 3.25630789630917124445164591837, 4.37487355214088104207185141240, 5.58483105479448335724630362185, 6.39764210383932576193678897987, 7.33002626429302553046383607616, 8.944601932809223119112670553153, 10.01644107204152604978391482550, 11.39974399115241433116101889782

Graph of the $Z$-function along the critical line