Properties

Label 2-182-1.1-c7-0-27
Degree $2$
Conductor $182$
Sign $1$
Analytic cond. $56.8540$
Root an. cond. $7.54016$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s + 89.1·3-s + 64·4-s + 535.·5-s − 713.·6-s + 343·7-s − 512·8-s + 5.76e3·9-s − 4.28e3·10-s − 4.01e3·11-s + 5.70e3·12-s + 2.19e3·13-s − 2.74e3·14-s + 4.77e4·15-s + 4.09e3·16-s − 2.80e4·17-s − 4.61e4·18-s + 7.31e3·19-s + 3.42e4·20-s + 3.05e4·21-s + 3.21e4·22-s + 4.96e4·23-s − 4.56e4·24-s + 2.08e5·25-s − 1.75e4·26-s + 3.19e5·27-s + 2.19e4·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.90·3-s + 0.5·4-s + 1.91·5-s − 1.34·6-s + 0.377·7-s − 0.353·8-s + 2.63·9-s − 1.35·10-s − 0.910·11-s + 0.953·12-s + 0.277·13-s − 0.267·14-s + 3.65·15-s + 0.250·16-s − 1.38·17-s − 1.86·18-s + 0.244·19-s + 0.957·20-s + 0.720·21-s + 0.643·22-s + 0.851·23-s − 0.674·24-s + 2.66·25-s − 0.196·26-s + 3.12·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 182 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 182 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(182\)    =    \(2 \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(56.8540\)
Root analytic conductor: \(7.54016\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 182,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(4.708577932\)
\(L(\frac12)\) \(\approx\) \(4.708577932\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 8T \)
7 \( 1 - 343T \)
13 \( 1 - 2.19e3T \)
good3 \( 1 - 89.1T + 2.18e3T^{2} \)
5 \( 1 - 535.T + 7.81e4T^{2} \)
11 \( 1 + 4.01e3T + 1.94e7T^{2} \)
17 \( 1 + 2.80e4T + 4.10e8T^{2} \)
19 \( 1 - 7.31e3T + 8.93e8T^{2} \)
23 \( 1 - 4.96e4T + 3.40e9T^{2} \)
29 \( 1 + 1.32e5T + 1.72e10T^{2} \)
31 \( 1 - 2.94e5T + 2.75e10T^{2} \)
37 \( 1 + 3.39e5T + 9.49e10T^{2} \)
41 \( 1 + 2.53e5T + 1.94e11T^{2} \)
43 \( 1 - 2.92e5T + 2.71e11T^{2} \)
47 \( 1 - 2.77e5T + 5.06e11T^{2} \)
53 \( 1 + 1.26e6T + 1.17e12T^{2} \)
59 \( 1 - 4.67e5T + 2.48e12T^{2} \)
61 \( 1 + 3.05e6T + 3.14e12T^{2} \)
67 \( 1 + 4.26e6T + 6.06e12T^{2} \)
71 \( 1 + 2.26e5T + 9.09e12T^{2} \)
73 \( 1 - 3.48e6T + 1.10e13T^{2} \)
79 \( 1 + 1.29e5T + 1.92e13T^{2} \)
83 \( 1 - 1.34e6T + 2.71e13T^{2} \)
89 \( 1 + 4.35e6T + 4.42e13T^{2} \)
97 \( 1 - 7.06e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.74075340385203157096994272848, −10.03385159923627085444664940487, −9.130388808771143029719475093392, −8.683746626537078446784024059705, −7.52220013058632878747073973366, −6.42540528699035434425200918852, −4.85452475222294541435708649345, −2.95839161641528972475786310957, −2.20983934495279300897652769973, −1.41231190632289482085141569789, 1.41231190632289482085141569789, 2.20983934495279300897652769973, 2.95839161641528972475786310957, 4.85452475222294541435708649345, 6.42540528699035434425200918852, 7.52220013058632878747073973366, 8.683746626537078446784024059705, 9.130388808771143029719475093392, 10.03385159923627085444664940487, 10.74075340385203157096994272848

Graph of the $Z$-function along the critical line