Properties

Label 2-1815-1.1-c3-0-90
Degree $2$
Conductor $1815$
Sign $1$
Analytic cond. $107.088$
Root an. cond. $10.3483$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.82·2-s + 3·3-s − 4.65·4-s + 5·5-s − 5.48·6-s + 15.0·7-s + 23.1·8-s + 9·9-s − 9.13·10-s − 13.9·12-s + 11.4·13-s − 27.5·14-s + 15·15-s − 5.02·16-s − 11.9·17-s − 16.4·18-s + 91.0·19-s − 23.2·20-s + 45.2·21-s + 103.·23-s + 69.4·24-s + 25·25-s − 20.9·26-s + 27·27-s − 70.3·28-s + 99.3·29-s − 27.4·30-s + ⋯
L(s)  = 1  − 0.646·2-s + 0.577·3-s − 0.582·4-s + 0.447·5-s − 0.373·6-s + 0.814·7-s + 1.02·8-s + 0.333·9-s − 0.289·10-s − 0.336·12-s + 0.243·13-s − 0.526·14-s + 0.258·15-s − 0.0785·16-s − 0.170·17-s − 0.215·18-s + 1.09·19-s − 0.260·20-s + 0.470·21-s + 0.935·23-s + 0.590·24-s + 0.200·25-s − 0.157·26-s + 0.192·27-s − 0.474·28-s + 0.636·29-s − 0.166·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1815 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1815 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1815\)    =    \(3 \cdot 5 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(107.088\)
Root analytic conductor: \(10.3483\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1815,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.316158555\)
\(L(\frac12)\) \(\approx\) \(2.316158555\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
5 \( 1 - 5T \)
11 \( 1 \)
good2 \( 1 + 1.82T + 8T^{2} \)
7 \( 1 - 15.0T + 343T^{2} \)
13 \( 1 - 11.4T + 2.19e3T^{2} \)
17 \( 1 + 11.9T + 4.91e3T^{2} \)
19 \( 1 - 91.0T + 6.85e3T^{2} \)
23 \( 1 - 103.T + 1.21e4T^{2} \)
29 \( 1 - 99.3T + 2.43e4T^{2} \)
31 \( 1 + 39.9T + 2.97e4T^{2} \)
37 \( 1 - 149.T + 5.06e4T^{2} \)
41 \( 1 - 135.T + 6.89e4T^{2} \)
43 \( 1 + 304.T + 7.95e4T^{2} \)
47 \( 1 - 113.T + 1.03e5T^{2} \)
53 \( 1 - 552.T + 1.48e5T^{2} \)
59 \( 1 + 251.T + 2.05e5T^{2} \)
61 \( 1 - 211.T + 2.26e5T^{2} \)
67 \( 1 - 947.T + 3.00e5T^{2} \)
71 \( 1 + 175.T + 3.57e5T^{2} \)
73 \( 1 + 768.T + 3.89e5T^{2} \)
79 \( 1 - 710.T + 4.93e5T^{2} \)
83 \( 1 + 902.T + 5.71e5T^{2} \)
89 \( 1 + 482.T + 7.04e5T^{2} \)
97 \( 1 - 724.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.890083364805225707599983787068, −8.277628632194984276095488158850, −7.59872927208291704091565699168, −6.79802891093884596830712156232, −5.49568455765400559022869348576, −4.84314368646538753197546411141, −3.93732599849672536407076968952, −2.80037734563663105944052343802, −1.61923964591889839547319110050, −0.844883549829202385190923874806, 0.844883549829202385190923874806, 1.61923964591889839547319110050, 2.80037734563663105944052343802, 3.93732599849672536407076968952, 4.84314368646538753197546411141, 5.49568455765400559022869348576, 6.79802891093884596830712156232, 7.59872927208291704091565699168, 8.277628632194984276095488158850, 8.890083364805225707599983787068

Graph of the $Z$-function along the critical line