Properties

Label 2-1815-1.1-c3-0-75
Degree $2$
Conductor $1815$
Sign $1$
Analytic cond. $107.088$
Root an. cond. $10.3483$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.26·2-s + 3·3-s + 19.6·4-s + 5·5-s − 15.7·6-s + 5.37·7-s − 61.4·8-s + 9·9-s − 26.3·10-s + 59.0·12-s − 5.15·13-s − 28.2·14-s + 15·15-s + 166.·16-s + 107.·17-s − 47.3·18-s − 70.1·19-s + 98.4·20-s + 16.1·21-s + 104.·23-s − 184.·24-s + 25·25-s + 27.1·26-s + 27·27-s + 105.·28-s − 122.·29-s − 78.9·30-s + ⋯
L(s)  = 1  − 1.86·2-s + 0.577·3-s + 2.46·4-s + 0.447·5-s − 1.07·6-s + 0.290·7-s − 2.71·8-s + 0.333·9-s − 0.831·10-s + 1.42·12-s − 0.109·13-s − 0.539·14-s + 0.258·15-s + 2.59·16-s + 1.53·17-s − 0.620·18-s − 0.847·19-s + 1.10·20-s + 0.167·21-s + 0.947·23-s − 1.56·24-s + 0.200·25-s + 0.204·26-s + 0.192·27-s + 0.713·28-s − 0.784·29-s − 0.480·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1815 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1815 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1815\)    =    \(3 \cdot 5 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(107.088\)
Root analytic conductor: \(10.3483\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1815,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.414751521\)
\(L(\frac12)\) \(\approx\) \(1.414751521\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
5 \( 1 - 5T \)
11 \( 1 \)
good2 \( 1 + 5.26T + 8T^{2} \)
7 \( 1 - 5.37T + 343T^{2} \)
13 \( 1 + 5.15T + 2.19e3T^{2} \)
17 \( 1 - 107.T + 4.91e3T^{2} \)
19 \( 1 + 70.1T + 6.85e3T^{2} \)
23 \( 1 - 104.T + 1.21e4T^{2} \)
29 \( 1 + 122.T + 2.43e4T^{2} \)
31 \( 1 - 252.T + 2.97e4T^{2} \)
37 \( 1 - 150.T + 5.06e4T^{2} \)
41 \( 1 + 17.3T + 6.89e4T^{2} \)
43 \( 1 + 459.T + 7.95e4T^{2} \)
47 \( 1 - 310.T + 1.03e5T^{2} \)
53 \( 1 + 322.T + 1.48e5T^{2} \)
59 \( 1 - 425.T + 2.05e5T^{2} \)
61 \( 1 - 75.2T + 2.26e5T^{2} \)
67 \( 1 + 898.T + 3.00e5T^{2} \)
71 \( 1 - 1.19e3T + 3.57e5T^{2} \)
73 \( 1 - 277.T + 3.89e5T^{2} \)
79 \( 1 - 1.25e3T + 4.93e5T^{2} \)
83 \( 1 + 156.T + 5.71e5T^{2} \)
89 \( 1 + 96.0T + 7.04e5T^{2} \)
97 \( 1 + 840.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.909490730058107259157685790705, −8.192682998256489555720773094778, −7.72125995763396566811546193124, −6.84168922423905360121830638897, −6.11668026964489981110415197648, −4.96581925206946217467038900186, −3.41739047889294735133890554364, −2.51132424948967309616672570234, −1.61779266309966773239668010028, −0.75158168061831881524838967917, 0.75158168061831881524838967917, 1.61779266309966773239668010028, 2.51132424948967309616672570234, 3.41739047889294735133890554364, 4.96581925206946217467038900186, 6.11668026964489981110415197648, 6.84168922423905360121830638897, 7.72125995763396566811546193124, 8.192682998256489555720773094778, 8.909490730058107259157685790705

Graph of the $Z$-function along the critical line