L(s) = 1 | + 5.26·2-s + 3·3-s + 19.6·4-s + 5·5-s + 15.7·6-s − 5.37·7-s + 61.4·8-s + 9·9-s + 26.3·10-s + 59.0·12-s + 5.15·13-s − 28.2·14-s + 15·15-s + 166.·16-s − 107.·17-s + 47.3·18-s + 70.1·19-s + 98.4·20-s − 16.1·21-s + 104.·23-s + 184.·24-s + 25·25-s + 27.1·26-s + 27·27-s − 105.·28-s + 122.·29-s + 78.9·30-s + ⋯ |
L(s) = 1 | + 1.86·2-s + 0.577·3-s + 2.46·4-s + 0.447·5-s + 1.07·6-s − 0.290·7-s + 2.71·8-s + 0.333·9-s + 0.831·10-s + 1.42·12-s + 0.109·13-s − 0.539·14-s + 0.258·15-s + 2.59·16-s − 1.53·17-s + 0.620·18-s + 0.847·19-s + 1.10·20-s − 0.167·21-s + 0.947·23-s + 1.56·24-s + 0.200·25-s + 0.204·26-s + 0.192·27-s − 0.713·28-s + 0.784·29-s + 0.480·30-s + ⋯ |
Λ(s)=(=(1815s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1815s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
10.93746749 |
L(21) |
≈ |
10.93746749 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−3T |
| 5 | 1−5T |
| 11 | 1 |
good | 2 | 1−5.26T+8T2 |
| 7 | 1+5.37T+343T2 |
| 13 | 1−5.15T+2.19e3T2 |
| 17 | 1+107.T+4.91e3T2 |
| 19 | 1−70.1T+6.85e3T2 |
| 23 | 1−104.T+1.21e4T2 |
| 29 | 1−122.T+2.43e4T2 |
| 31 | 1−252.T+2.97e4T2 |
| 37 | 1−150.T+5.06e4T2 |
| 41 | 1−17.3T+6.89e4T2 |
| 43 | 1−459.T+7.95e4T2 |
| 47 | 1−310.T+1.03e5T2 |
| 53 | 1+322.T+1.48e5T2 |
| 59 | 1−425.T+2.05e5T2 |
| 61 | 1+75.2T+2.26e5T2 |
| 67 | 1+898.T+3.00e5T2 |
| 71 | 1−1.19e3T+3.57e5T2 |
| 73 | 1+277.T+3.89e5T2 |
| 79 | 1+1.25e3T+4.93e5T2 |
| 83 | 1−156.T+5.71e5T2 |
| 89 | 1+96.0T+7.04e5T2 |
| 97 | 1+840.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.913756565237369572990137677964, −7.85444138206706893240258514378, −6.89946616569584366996095580564, −6.43991654416683018619593579753, −5.54557555296018949605193382116, −4.65373309934304937388015097981, −4.06578856020299078175997031077, −2.87830680894750883760537362042, −2.55413511531942314166241788734, −1.25566548165062588526259291134,
1.25566548165062588526259291134, 2.55413511531942314166241788734, 2.87830680894750883760537362042, 4.06578856020299078175997031077, 4.65373309934304937388015097981, 5.54557555296018949605193382116, 6.43991654416683018619593579753, 6.89946616569584366996095580564, 7.85444138206706893240258514378, 8.913756565237369572990137677964