| L(s) = 1 | + 12i·7-s − 64·11-s + 58i·13-s + 32i·17-s + 136·19-s + 128i·23-s − 144·29-s + 20·31-s + 18i·37-s + 288·41-s − 200i·43-s + 384i·47-s + 199·49-s − 496i·53-s − 128·59-s + ⋯ |
| L(s) = 1 | + 0.647i·7-s − 1.75·11-s + 1.23i·13-s + 0.456i·17-s + 1.64·19-s + 1.16i·23-s − 0.922·29-s + 0.115·31-s + 0.0799i·37-s + 1.09·41-s − 0.709i·43-s + 1.19i·47-s + 0.580·49-s − 1.28i·53-s − 0.282·59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(0.3932152873\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.3932152873\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| good | 7 | \( 1 - 12iT - 343T^{2} \) |
| 11 | \( 1 + 64T + 1.33e3T^{2} \) |
| 13 | \( 1 - 58iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 32iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 136T + 6.85e3T^{2} \) |
| 23 | \( 1 - 128iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 144T + 2.43e4T^{2} \) |
| 31 | \( 1 - 20T + 2.97e4T^{2} \) |
| 37 | \( 1 - 18iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 288T + 6.89e4T^{2} \) |
| 43 | \( 1 + 200iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 384iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 496iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 128T + 2.05e5T^{2} \) |
| 61 | \( 1 + 458T + 2.26e5T^{2} \) |
| 67 | \( 1 - 496iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 512T + 3.57e5T^{2} \) |
| 73 | \( 1 + 602iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 1.10e3T + 4.93e5T^{2} \) |
| 83 | \( 1 + 704iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 960T + 7.04e5T^{2} \) |
| 97 | \( 1 + 206iT - 9.12e5T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.388295226244669679260101860064, −8.632662603453677885236345100363, −7.63544854211312086908901840672, −7.26721445541541534465783662721, −5.91377900059420246383667924249, −5.46279773327275600983828546674, −4.54749442780817415172929661341, −3.38778783659632234022091700824, −2.49993053539667706191837468908, −1.50098375176095871374592539682,
0.092160355158070527508660555315, 0.990242795512852736264149046519, 2.58044692364601156839772417517, 3.16130504692258571769513401708, 4.39437550231944096163133226722, 5.30332016137997398492004057829, 5.81005970875817812941579013912, 7.17840778314708130700105552394, 7.63083248840639964612880429709, 8.256462874117722207163324139719