Properties

Label 2-1800-15.14-c2-0-8
Degree $2$
Conductor $1800$
Sign $0.151 - 0.988i$
Analytic cond. $49.0464$
Root an. cond. $7.00331$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.32i·7-s + 16.4i·11-s − 5.64i·13-s + 13.1·17-s − 7.97·19-s + 9.89·23-s − 6.61i·29-s − 25.3·31-s + 37.9i·37-s − 16.4i·41-s + 20.6i·43-s − 13.1·47-s + 37.9·49-s − 16.4·53-s + 6.61i·59-s + ⋯
L(s)  = 1  − 0.474i·7-s + 1.49i·11-s − 0.434i·13-s + 0.775·17-s − 0.419·19-s + 0.430·23-s − 0.228i·29-s − 0.816·31-s + 1.02i·37-s − 0.400i·41-s + 0.480i·43-s − 0.280·47-s + 0.774·49-s − 0.310·53-s + 0.112i·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.151 - 0.988i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.151 - 0.988i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1800\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2}\)
Sign: $0.151 - 0.988i$
Analytic conductor: \(49.0464\)
Root analytic conductor: \(7.00331\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1800} (449, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1800,\ (\ :1),\ 0.151 - 0.988i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.526258063\)
\(L(\frac12)\) \(\approx\) \(1.526258063\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 3.32iT - 49T^{2} \)
11 \( 1 - 16.4iT - 121T^{2} \)
13 \( 1 + 5.64iT - 169T^{2} \)
17 \( 1 - 13.1T + 289T^{2} \)
19 \( 1 + 7.97T + 361T^{2} \)
23 \( 1 - 9.89T + 529T^{2} \)
29 \( 1 + 6.61iT - 841T^{2} \)
31 \( 1 + 25.3T + 961T^{2} \)
37 \( 1 - 37.9iT - 1.36e3T^{2} \)
41 \( 1 + 16.4iT - 1.68e3T^{2} \)
43 \( 1 - 20.6iT - 1.84e3T^{2} \)
47 \( 1 + 13.1T + 2.20e3T^{2} \)
53 \( 1 + 16.4T + 2.80e3T^{2} \)
59 \( 1 - 6.61iT - 3.48e3T^{2} \)
61 \( 1 + 104.T + 3.72e3T^{2} \)
67 \( 1 - 64.0iT - 4.48e3T^{2} \)
71 \( 1 - 58.0iT - 5.04e3T^{2} \)
73 \( 1 - 128. iT - 5.32e3T^{2} \)
79 \( 1 - 90.5T + 6.24e3T^{2} \)
83 \( 1 - 80.9T + 6.88e3T^{2} \)
89 \( 1 + 74.4iT - 7.92e3T^{2} \)
97 \( 1 + 69.4iT - 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.400208879025559767107492215560, −8.429440227844883071795688190669, −7.54828885859760253097669073343, −7.08236960244962588872490865137, −6.09258117489023790144882701151, −5.10150202056436738304923543412, −4.37030794902455735129306695380, −3.40116137029780002120031695683, −2.25583872325006563099288431821, −1.12221809464485687203855443612, 0.43523168052307160533947704003, 1.77634946063383515519413588050, 3.00074490864400932297010386885, 3.73020414618958513463942196331, 4.92482837553284975688479829193, 5.76440307244540043121324476390, 6.35473491321161943430462700079, 7.41813631972037548526810725797, 8.189474229864594771047892095809, 8.982120155582279998323403734009

Graph of the $Z$-function along the critical line