Properties

Label 2-1800-15.14-c2-0-3
Degree $2$
Conductor $1800$
Sign $-0.988 + 0.151i$
Analytic cond. $49.0464$
Root an. cond. $7.00331$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 12i·7-s − 5.65i·11-s + 8i·13-s − 9.89·17-s + 16·19-s − 39.5·23-s + 29.6i·29-s − 4·31-s + 30i·37-s − 21.2i·41-s + 8i·43-s + 16.9·47-s − 95·49-s + 49.4·53-s − 79.1i·59-s + ⋯
L(s)  = 1  + 1.71i·7-s − 0.514i·11-s + 0.615i·13-s − 0.582·17-s + 0.842·19-s − 1.72·23-s + 1.02i·29-s − 0.129·31-s + 0.810i·37-s − 0.517i·41-s + 0.186i·43-s + 0.361·47-s − 1.93·49-s + 0.933·53-s − 1.34i·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.988 + 0.151i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.988 + 0.151i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1800\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2}\)
Sign: $-0.988 + 0.151i$
Analytic conductor: \(49.0464\)
Root analytic conductor: \(7.00331\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1800} (449, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1800,\ (\ :1),\ -0.988 + 0.151i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.5794139330\)
\(L(\frac12)\) \(\approx\) \(0.5794139330\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 12iT - 49T^{2} \)
11 \( 1 + 5.65iT - 121T^{2} \)
13 \( 1 - 8iT - 169T^{2} \)
17 \( 1 + 9.89T + 289T^{2} \)
19 \( 1 - 16T + 361T^{2} \)
23 \( 1 + 39.5T + 529T^{2} \)
29 \( 1 - 29.6iT - 841T^{2} \)
31 \( 1 + 4T + 961T^{2} \)
37 \( 1 - 30iT - 1.36e3T^{2} \)
41 \( 1 + 21.2iT - 1.68e3T^{2} \)
43 \( 1 - 8iT - 1.84e3T^{2} \)
47 \( 1 - 16.9T + 2.20e3T^{2} \)
53 \( 1 - 49.4T + 2.80e3T^{2} \)
59 \( 1 + 79.1iT - 3.48e3T^{2} \)
61 \( 1 + 14T + 3.72e3T^{2} \)
67 \( 1 + 88iT - 4.48e3T^{2} \)
71 \( 1 + 28.2iT - 5.04e3T^{2} \)
73 \( 1 - 80iT - 5.32e3T^{2} \)
79 \( 1 + 100T + 6.24e3T^{2} \)
83 \( 1 + 130.T + 6.88e3T^{2} \)
89 \( 1 + 148. iT - 7.92e3T^{2} \)
97 \( 1 + 112iT - 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.363984141778170820953539083207, −8.721542670985086120609905982458, −8.168072206269239062872997782182, −7.07207350396058704370460248443, −6.14009263723160638763347959548, −5.59815722542855644557719042901, −4.70674480988396485014163262800, −3.53766173370996745488686584429, −2.56067438868451252233752527692, −1.67413134367032139399551538030, 0.15059105342851282699049540637, 1.27648315221602330582820402923, 2.57471257507828059687086241614, 3.90430961237801907542236904428, 4.24893708065022271255664420745, 5.42813105171589147982448287431, 6.35044507452718468565454183081, 7.33598851364626529908662212187, 7.63655958991451434598557329615, 8.585205836025527304379369177952

Graph of the $Z$-function along the critical line