L(s) = 1 | − 3.16i·7-s − 5.88i·11-s + 1.16i·13-s + 17.8·17-s + 26.9·19-s − 16.2·23-s + 19.9i·29-s − 29.6·31-s + 15.4i·37-s − 37.1i·41-s + 8.27i·43-s + 17.4·47-s + 39·49-s − 83.8·53-s − 75.1i·59-s + ⋯ |
L(s) = 1 | − 0.451i·7-s − 0.535i·11-s + 0.0894i·13-s + 1.05·17-s + 1.41·19-s − 0.706·23-s + 0.689i·29-s − 0.955·31-s + 0.418i·37-s − 0.907i·41-s + 0.192i·43-s + 0.370·47-s + 0.795·49-s − 1.58·53-s − 1.27i·59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.472 + 0.881i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.472 + 0.881i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.913430428\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.913430428\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + 3.16iT - 49T^{2} \) |
| 11 | \( 1 + 5.88iT - 121T^{2} \) |
| 13 | \( 1 - 1.16iT - 169T^{2} \) |
| 17 | \( 1 - 17.8T + 289T^{2} \) |
| 19 | \( 1 - 26.9T + 361T^{2} \) |
| 23 | \( 1 + 16.2T + 529T^{2} \) |
| 29 | \( 1 - 19.9iT - 841T^{2} \) |
| 31 | \( 1 + 29.6T + 961T^{2} \) |
| 37 | \( 1 - 15.4iT - 1.36e3T^{2} \) |
| 41 | \( 1 + 37.1iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 8.27iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 17.4T + 2.20e3T^{2} \) |
| 53 | \( 1 + 83.8T + 2.80e3T^{2} \) |
| 59 | \( 1 + 75.1iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 82.2T + 3.72e3T^{2} \) |
| 67 | \( 1 + 79.8iT - 4.48e3T^{2} \) |
| 71 | \( 1 + 24.0iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 107. iT - 5.32e3T^{2} \) |
| 79 | \( 1 - 62.3T + 6.24e3T^{2} \) |
| 83 | \( 1 - 68.7T + 6.88e3T^{2} \) |
| 89 | \( 1 + 86.7iT - 7.92e3T^{2} \) |
| 97 | \( 1 - 99.5iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.063537688825542346423198663203, −7.992555130045663244844046345774, −7.52323984656031250048554984935, −6.59125493854834458907922306979, −5.65021984071307193690941926580, −4.98998292867937279373710781880, −3.74219095921925770865429838371, −3.16970254625750426849002629333, −1.72811836467146292794236484024, −0.59009614583986417322468118091,
1.04978784890635986858540014901, 2.26036480999434453775639502784, 3.28310693262232162294190456043, 4.22801002866759863651309954818, 5.36257169666305957801428319973, 5.80321737967633688212690008625, 6.97381258876268597554526873469, 7.66177286510883695858862079269, 8.355126565515831727740674183964, 9.444468503109753371506038261284