Properties

Label 2-1800-15.14-c2-0-23
Degree $2$
Conductor $1800$
Sign $0.472 + 0.881i$
Analytic cond. $49.0464$
Root an. cond. $7.00331$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.16i·7-s − 5.88i·11-s + 1.16i·13-s + 17.8·17-s + 26.9·19-s − 16.2·23-s + 19.9i·29-s − 29.6·31-s + 15.4i·37-s − 37.1i·41-s + 8.27i·43-s + 17.4·47-s + 39·49-s − 83.8·53-s − 75.1i·59-s + ⋯
L(s)  = 1  − 0.451i·7-s − 0.535i·11-s + 0.0894i·13-s + 1.05·17-s + 1.41·19-s − 0.706·23-s + 0.689i·29-s − 0.955·31-s + 0.418i·37-s − 0.907i·41-s + 0.192i·43-s + 0.370·47-s + 0.795·49-s − 1.58·53-s − 1.27i·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.472 + 0.881i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.472 + 0.881i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1800\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2}\)
Sign: $0.472 + 0.881i$
Analytic conductor: \(49.0464\)
Root analytic conductor: \(7.00331\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1800} (449, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1800,\ (\ :1),\ 0.472 + 0.881i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.913430428\)
\(L(\frac12)\) \(\approx\) \(1.913430428\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 3.16iT - 49T^{2} \)
11 \( 1 + 5.88iT - 121T^{2} \)
13 \( 1 - 1.16iT - 169T^{2} \)
17 \( 1 - 17.8T + 289T^{2} \)
19 \( 1 - 26.9T + 361T^{2} \)
23 \( 1 + 16.2T + 529T^{2} \)
29 \( 1 - 19.9iT - 841T^{2} \)
31 \( 1 + 29.6T + 961T^{2} \)
37 \( 1 - 15.4iT - 1.36e3T^{2} \)
41 \( 1 + 37.1iT - 1.68e3T^{2} \)
43 \( 1 - 8.27iT - 1.84e3T^{2} \)
47 \( 1 - 17.4T + 2.20e3T^{2} \)
53 \( 1 + 83.8T + 2.80e3T^{2} \)
59 \( 1 + 75.1iT - 3.48e3T^{2} \)
61 \( 1 - 82.2T + 3.72e3T^{2} \)
67 \( 1 + 79.8iT - 4.48e3T^{2} \)
71 \( 1 + 24.0iT - 5.04e3T^{2} \)
73 \( 1 + 107. iT - 5.32e3T^{2} \)
79 \( 1 - 62.3T + 6.24e3T^{2} \)
83 \( 1 - 68.7T + 6.88e3T^{2} \)
89 \( 1 + 86.7iT - 7.92e3T^{2} \)
97 \( 1 - 99.5iT - 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.063537688825542346423198663203, −7.992555130045663244844046345774, −7.52323984656031250048554984935, −6.59125493854834458907922306979, −5.65021984071307193690941926580, −4.98998292867937279373710781880, −3.74219095921925770865429838371, −3.16970254625750426849002629333, −1.72811836467146292794236484024, −0.59009614583986417322468118091, 1.04978784890635986858540014901, 2.26036480999434453775639502784, 3.28310693262232162294190456043, 4.22801002866759863651309954818, 5.36257169666305957801428319973, 5.80321737967633688212690008625, 6.97381258876268597554526873469, 7.66177286510883695858862079269, 8.355126565515831727740674183964, 9.444468503109753371506038261284

Graph of the $Z$-function along the critical line