| L(s) = 1 | + 3.16i·7-s − 3.05i·11-s − 5.16i·13-s + 17.8·17-s − 10.9·19-s − 10.5·23-s + 42.6i·29-s + 33.6·31-s − 3.48i·37-s − 34.3i·41-s − 80.2i·43-s + 0.458·47-s + 39·49-s + 12.3·53-s + 12.5i·59-s + ⋯ |
| L(s) = 1 | + 0.451i·7-s − 0.277i·11-s − 0.397i·13-s + 1.05·17-s − 0.577·19-s − 0.460·23-s + 1.46i·29-s + 1.08·31-s − 0.0942i·37-s − 0.838i·41-s − 1.86i·43-s + 0.00976·47-s + 0.795·49-s + 0.232·53-s + 0.212i·59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.988 - 0.151i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.988 - 0.151i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{3}{2})\) |
\(\approx\) |
\(1.969924191\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.969924191\) |
| \(L(2)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| good | 7 | \( 1 - 3.16iT - 49T^{2} \) |
| 11 | \( 1 + 3.05iT - 121T^{2} \) |
| 13 | \( 1 + 5.16iT - 169T^{2} \) |
| 17 | \( 1 - 17.8T + 289T^{2} \) |
| 19 | \( 1 + 10.9T + 361T^{2} \) |
| 23 | \( 1 + 10.5T + 529T^{2} \) |
| 29 | \( 1 - 42.6iT - 841T^{2} \) |
| 31 | \( 1 - 33.6T + 961T^{2} \) |
| 37 | \( 1 + 3.48iT - 1.36e3T^{2} \) |
| 41 | \( 1 + 34.3iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 80.2iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 0.458T + 2.20e3T^{2} \) |
| 53 | \( 1 - 12.3T + 2.80e3T^{2} \) |
| 59 | \( 1 - 12.5iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 6.27T + 3.72e3T^{2} \) |
| 67 | \( 1 - 71.8iT - 4.48e3T^{2} \) |
| 71 | \( 1 - 77.7iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 31.5iT - 5.32e3T^{2} \) |
| 79 | \( 1 - 125.T + 6.24e3T^{2} \) |
| 83 | \( 1 - 74.3T + 6.88e3T^{2} \) |
| 89 | \( 1 - 68.8iT - 7.92e3T^{2} \) |
| 97 | \( 1 + 39.5iT - 9.40e3T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.923325319638195532779456172678, −8.463678704331757943344883295896, −7.55382319067653295806471544262, −6.74625580745607104453269444390, −5.75139779011304043422991828581, −5.23503578151297600553149051714, −4.04025248408083977774625814217, −3.15517604390094506165939582480, −2.11982772484812766355984373514, −0.794082839927001764021142147088,
0.75251714555345412733772779599, 1.99078335255926580143961474160, 3.12838014737432291963548321442, 4.16790273549520093701422078549, 4.83237260899316403954790280972, 6.03628062405152725189703491908, 6.56013432764584939926505612063, 7.73329450772714036111224415758, 8.029946554848822984306443166059, 9.190174788975631707412489646846