L(s) = 1 | − 26·7-s + 59·11-s − 28·13-s + 5·17-s + 109·19-s − 194·23-s + 32·29-s + 10·31-s + 198·37-s − 117·41-s − 388·43-s − 68·47-s + 333·49-s − 18·53-s − 392·59-s − 710·61-s + 253·67-s + 612·71-s + 549·73-s − 1.53e3·77-s + 414·79-s − 121·83-s + 81·89-s + 728·91-s + 1.50e3·97-s + 234·101-s + 1.17e3·103-s + ⋯ |
L(s) = 1 | − 1.40·7-s + 1.61·11-s − 0.597·13-s + 0.0713·17-s + 1.31·19-s − 1.75·23-s + 0.204·29-s + 0.0579·31-s + 0.879·37-s − 0.445·41-s − 1.37·43-s − 0.211·47-s + 0.970·49-s − 0.0466·53-s − 0.864·59-s − 1.49·61-s + 0.461·67-s + 1.02·71-s + 0.880·73-s − 2.27·77-s + 0.589·79-s − 0.160·83-s + 0.0964·89-s + 0.838·91-s + 1.57·97-s + 0.230·101-s + 1.12·103-s + ⋯ |
Λ(s)=(=(1800s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1800s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.623182114 |
L(21) |
≈ |
1.623182114 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1+26T+p3T2 |
| 11 | 1−59T+p3T2 |
| 13 | 1+28T+p3T2 |
| 17 | 1−5T+p3T2 |
| 19 | 1−109T+p3T2 |
| 23 | 1+194T+p3T2 |
| 29 | 1−32T+p3T2 |
| 31 | 1−10T+p3T2 |
| 37 | 1−198T+p3T2 |
| 41 | 1+117T+p3T2 |
| 43 | 1+388T+p3T2 |
| 47 | 1+68T+p3T2 |
| 53 | 1+18T+p3T2 |
| 59 | 1+392T+p3T2 |
| 61 | 1+710T+p3T2 |
| 67 | 1−253T+p3T2 |
| 71 | 1−612T+p3T2 |
| 73 | 1−549T+p3T2 |
| 79 | 1−414T+p3T2 |
| 83 | 1+121T+p3T2 |
| 89 | 1−81T+p3T2 |
| 97 | 1−1502T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.170474303194529578552590647186, −8.111302615699579225715583640660, −7.21921641606883845754540527517, −6.44418372106866791886892183739, −5.96641922761082019807857810914, −4.75251869095824657444713976859, −3.73323162285852791753673394707, −3.14786917416481041115075918618, −1.84442289015236427275908077816, −0.59519584277076253382780006874,
0.59519584277076253382780006874, 1.84442289015236427275908077816, 3.14786917416481041115075918618, 3.73323162285852791753673394707, 4.75251869095824657444713976859, 5.96641922761082019807857810914, 6.44418372106866791886892183739, 7.21921641606883845754540527517, 8.111302615699579225715583640660, 9.170474303194529578552590647186