L(s) = 1 | + (−0.442 − 1.34i)2-s + (0.112 − 1.72i)3-s + (−1.60 + 1.18i)4-s + (0.989 − 2.00i)5-s + (−2.37 + 0.613i)6-s + (0.573 − 0.993i)7-s + (2.30 + 1.63i)8-s + (−2.97 − 0.388i)9-s + (−3.13 − 0.442i)10-s + (0.629 − 1.09i)11-s + (1.87 + 2.91i)12-s + (−4.39 + 2.53i)13-s + (−1.58 − 0.331i)14-s + (−3.35 − 1.93i)15-s + (1.17 − 3.82i)16-s + 3.29·17-s + ⋯ |
L(s) = 1 | + (−0.312 − 0.949i)2-s + (0.0649 − 0.997i)3-s + (−0.804 + 0.594i)4-s + (0.442 − 0.896i)5-s + (−0.968 + 0.250i)6-s + (0.216 − 0.375i)7-s + (0.815 + 0.578i)8-s + (−0.991 − 0.129i)9-s + (−0.990 − 0.140i)10-s + (0.189 − 0.328i)11-s + (0.540 + 0.841i)12-s + (−1.21 + 0.704i)13-s + (−0.424 − 0.0885i)14-s + (−0.866 − 0.499i)15-s + (0.294 − 0.955i)16-s + 0.799·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.922 + 0.386i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.922 + 0.386i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.189176 - 0.941363i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.189176 - 0.941363i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.442 + 1.34i)T \) |
| 3 | \( 1 + (-0.112 + 1.72i)T \) |
| 5 | \( 1 + (-0.989 + 2.00i)T \) |
good | 7 | \( 1 + (-0.573 + 0.993i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.629 + 1.09i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (4.39 - 2.53i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 3.29T + 17T^{2} \) |
| 19 | \( 1 - 3.62iT - 19T^{2} \) |
| 23 | \( 1 + (-3.09 + 1.78i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (0.184 + 0.106i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-9.12 + 5.26i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 4.72iT - 37T^{2} \) |
| 41 | \( 1 + (-5.81 + 3.35i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1.41 - 2.45i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.925 - 0.534i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 9.12T + 53T^{2} \) |
| 59 | \( 1 + (4.87 + 8.43i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (5.24 - 9.08i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-7.42 - 12.8i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 9.68T + 71T^{2} \) |
| 73 | \( 1 - 9.08iT - 73T^{2} \) |
| 79 | \( 1 + (5.78 + 3.34i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (4.93 + 2.84i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 2.26iT - 89T^{2} \) |
| 97 | \( 1 + (-6.69 - 3.86i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.22594600286932757786849375111, −11.56693811955718479870437256671, −10.18811326628392881645667950987, −9.241293805286978451401131381588, −8.276263317746711946472408265963, −7.35194470770274334184277362543, −5.69984362720324907343711363777, −4.34005335068441628815309184142, −2.48033662855235977892859771406, −1.07058242699742850647923908483,
2.94712121341270404416632699279, 4.74009054221091262253690801494, 5.60755477460206801828722761562, 6.86614091305233950137376707707, 7.977110309117070711417671677285, 9.209387782635874057283547459730, 9.968178511829532300565454961168, 10.65425781987320249158182573246, 11.99425681596288190610299297022, 13.53428670643115608516464792135