| L(s) = 1 | + (1.41 + 0.0886i)2-s + (0.119 + 1.72i)3-s + (1.98 + 0.250i)4-s + (0.395 − 2.20i)5-s + (0.0147 + 2.44i)6-s + (0.331 − 1.23i)7-s + (2.77 + 0.529i)8-s + (−2.97 + 0.411i)9-s + (0.753 − 3.07i)10-s + (−4.09 + 2.36i)11-s + (−0.196 + 3.45i)12-s + (−1.67 + 0.448i)13-s + (0.576 − 1.71i)14-s + (3.84 + 0.421i)15-s + (3.87 + 0.993i)16-s + (−2.37 + 2.37i)17-s + ⋯ |
| L(s) = 1 | + (0.998 + 0.0627i)2-s + (0.0687 + 0.997i)3-s + (0.992 + 0.125i)4-s + (0.176 − 0.984i)5-s + (0.00602 + 0.999i)6-s + (0.125 − 0.466i)7-s + (0.982 + 0.187i)8-s + (−0.990 + 0.137i)9-s + (0.238 − 0.971i)10-s + (−1.23 + 0.712i)11-s + (−0.0566 + 0.998i)12-s + (−0.464 + 0.124i)13-s + (0.154 − 0.458i)14-s + (0.994 + 0.108i)15-s + (0.968 + 0.248i)16-s + (−0.575 + 0.575i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.876 - 0.481i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.876 - 0.481i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.94651 + 0.499464i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.94651 + 0.499464i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-1.41 - 0.0886i)T \) |
| 3 | \( 1 + (-0.119 - 1.72i)T \) |
| 5 | \( 1 + (-0.395 + 2.20i)T \) |
| good | 7 | \( 1 + (-0.331 + 1.23i)T + (-6.06 - 3.5i)T^{2} \) |
| 11 | \( 1 + (4.09 - 2.36i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (1.67 - 0.448i)T + (11.2 - 6.5i)T^{2} \) |
| 17 | \( 1 + (2.37 - 2.37i)T - 17iT^{2} \) |
| 19 | \( 1 - 2.26T + 19T^{2} \) |
| 23 | \( 1 + (2.26 + 8.43i)T + (-19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 + (-0.111 + 0.0641i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-5.75 - 3.32i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (0.433 - 0.433i)T - 37iT^{2} \) |
| 41 | \( 1 + (-3.06 + 5.30i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.10 - 1.09i)T + (37.2 + 21.5i)T^{2} \) |
| 47 | \( 1 + (1.24 - 4.63i)T + (-40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + (3.98 + 3.98i)T + 53iT^{2} \) |
| 59 | \( 1 + (7.36 - 12.7i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.25 - 9.09i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.219 + 0.0587i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + 3.57iT - 71T^{2} \) |
| 73 | \( 1 + (4.90 + 4.90i)T + 73iT^{2} \) |
| 79 | \( 1 + (0.916 + 1.58i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (5.78 + 1.55i)T + (71.8 + 41.5i)T^{2} \) |
| 89 | \( 1 + 11.4iT - 89T^{2} \) |
| 97 | \( 1 + (3.00 + 0.803i)T + (84.0 + 48.5i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.76727244653171548122042881401, −11.99558520175231917788616629683, −10.65529575467694970307211925929, −10.09806242778534905841855865242, −8.663078346789631625915283309067, −7.58655227478441211989420626704, −5.97454499602810683255147598445, −4.80627262237121831503839080719, −4.32669142827459589626478780217, −2.53240529514521570954993350917,
2.29719661482523669203508897534, 3.18300295556892615361656163630, 5.31128602865918897915612458804, 6.11949976269476116851616941653, 7.27334058744972589849015041061, 7.993847969258435415786137272432, 9.813923541716619754725221893891, 11.14555326226613215293822782062, 11.60746960217565030123359079063, 12.75446571705732086724055248662