L(s) = 1 | + 2.30·2-s − 1.30i·3-s + 3.30·4-s + 2.30i·5-s − 3i·6-s + 0.302i·7-s + 3.00·8-s + 1.30·9-s + 5.30i·10-s − 3i·11-s − 4.30i·12-s − 3.30·13-s + 0.697i·14-s + 3·15-s + 0.302·16-s + ⋯ |
L(s) = 1 | + 1.62·2-s − 0.752i·3-s + 1.65·4-s + 1.02i·5-s − 1.22i·6-s + 0.114i·7-s + 1.06·8-s + 0.434·9-s + 1.67i·10-s − 0.904i·11-s − 1.24i·12-s − 0.916·13-s + 0.186i·14-s + 0.774·15-s + 0.0756·16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 289 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.970 + 0.242i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 289 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.970 + 0.242i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.88993 - 0.355767i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.88993 - 0.355767i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 17 | \( 1 \) |
good | 2 | \( 1 - 2.30T + 2T^{2} \) |
| 3 | \( 1 + 1.30iT - 3T^{2} \) |
| 5 | \( 1 - 2.30iT - 5T^{2} \) |
| 7 | \( 1 - 0.302iT - 7T^{2} \) |
| 11 | \( 1 + 3iT - 11T^{2} \) |
| 13 | \( 1 + 3.30T + 13T^{2} \) |
| 19 | \( 1 + 5.90T + 19T^{2} \) |
| 23 | \( 1 + 2.30iT - 23T^{2} \) |
| 29 | \( 1 - 9.90iT - 29T^{2} \) |
| 31 | \( 1 - 3.60iT - 31T^{2} \) |
| 37 | \( 1 - 0.605iT - 37T^{2} \) |
| 41 | \( 1 + 6iT - 41T^{2} \) |
| 43 | \( 1 - 2.39T + 43T^{2} \) |
| 47 | \( 1 - 3T + 47T^{2} \) |
| 53 | \( 1 + 2.09T + 53T^{2} \) |
| 59 | \( 1 + 6T + 59T^{2} \) |
| 61 | \( 1 - 8.81iT - 61T^{2} \) |
| 67 | \( 1 - 12.6T + 67T^{2} \) |
| 71 | \( 1 + 3.21iT - 71T^{2} \) |
| 73 | \( 1 - 0.394iT - 73T^{2} \) |
| 79 | \( 1 + 11.2iT - 79T^{2} \) |
| 83 | \( 1 + 2.51T + 83T^{2} \) |
| 89 | \( 1 - 3.21T + 89T^{2} \) |
| 97 | \( 1 + 10.9iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.27903010789664160269508586010, −11.04251530854045900155310452697, −10.44235836520265008517664041909, −8.726494561065662511562972439206, −7.23547644733373997605511936723, −6.74459287197148895437943889181, −5.81041078732646165503022680908, −4.54963428732879217212389565932, −3.27906260025063364377979722862, −2.25504994659742440502227641625,
2.26350086311836236810123052886, 4.05526647325682379495121925185, 4.51025531549126923008860426578, 5.32276770502506408914670982726, 6.57684939579304217081878569939, 7.76919037603583222095851528179, 9.245615835640813122374148953986, 10.01829437691983885928955998000, 11.19265604426638155145452652228, 12.27109791008562083092715463582