L(s) = 1 | + (0.707 + 0.707i)2-s − 0.999i·4-s + (−1.84 + 0.765i)5-s + (3.69 + 1.53i)7-s + (2.12 − 2.12i)8-s + (2.12 − 2.12i)9-s + (−1.84 − 0.765i)10-s + 2i·13-s + (1.53 + 3.69i)14-s + 1.00·16-s + 3·18-s + (2.82 + 2.82i)19-s + (0.765 + 1.84i)20-s + (1.53 − 3.69i)23-s + (−0.707 + 0.707i)25-s + (−1.41 + 1.41i)26-s + ⋯ |
L(s) = 1 | + (0.499 + 0.499i)2-s − 0.499i·4-s + (−0.826 + 0.342i)5-s + (1.39 + 0.578i)7-s + (0.750 − 0.750i)8-s + (0.707 − 0.707i)9-s + (−0.584 − 0.242i)10-s + 0.554i·13-s + (0.409 + 0.987i)14-s + 0.250·16-s + 0.707·18-s + (0.648 + 0.648i)19-s + (0.171 + 0.413i)20-s + (0.319 − 0.770i)23-s + (−0.141 + 0.141i)25-s + (−0.277 + 0.277i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 289 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.954 - 0.299i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 289 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.954 - 0.299i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.72006 + 0.263837i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.72006 + 0.263837i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 17 | \( 1 \) |
good | 2 | \( 1 + (-0.707 - 0.707i)T + 2iT^{2} \) |
| 3 | \( 1 + (-2.12 + 2.12i)T^{2} \) |
| 5 | \( 1 + (1.84 - 0.765i)T + (3.53 - 3.53i)T^{2} \) |
| 7 | \( 1 + (-3.69 - 1.53i)T + (4.94 + 4.94i)T^{2} \) |
| 11 | \( 1 + (-7.77 - 7.77i)T^{2} \) |
| 13 | \( 1 - 2iT - 13T^{2} \) |
| 19 | \( 1 + (-2.82 - 2.82i)T + 19iT^{2} \) |
| 23 | \( 1 + (-1.53 + 3.69i)T + (-16.2 - 16.2i)T^{2} \) |
| 29 | \( 1 + (5.54 - 2.29i)T + (20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 + (1.53 + 3.69i)T + (-21.9 + 21.9i)T^{2} \) |
| 37 | \( 1 + (0.765 + 1.84i)T + (-26.1 + 26.1i)T^{2} \) |
| 41 | \( 1 + (5.54 + 2.29i)T + (28.9 + 28.9i)T^{2} \) |
| 43 | \( 1 + (2.82 - 2.82i)T - 43iT^{2} \) |
| 47 | \( 1 - 47T^{2} \) |
| 53 | \( 1 + (4.24 + 4.24i)T + 53iT^{2} \) |
| 59 | \( 1 + (8.48 - 8.48i)T - 59iT^{2} \) |
| 61 | \( 1 + (-9.23 - 3.82i)T + (43.1 + 43.1i)T^{2} \) |
| 67 | \( 1 + 4T + 67T^{2} \) |
| 71 | \( 1 + (1.53 + 3.69i)T + (-50.2 + 50.2i)T^{2} \) |
| 73 | \( 1 + (5.54 - 2.29i)T + (51.6 - 51.6i)T^{2} \) |
| 79 | \( 1 + (4.59 - 11.0i)T + (-55.8 - 55.8i)T^{2} \) |
| 83 | \( 1 + (2.82 + 2.82i)T + 83iT^{2} \) |
| 89 | \( 1 - 10iT - 89T^{2} \) |
| 97 | \( 1 + (1.84 - 0.765i)T + (68.5 - 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.75719454311159391205112806121, −11.13600942811738965063393632641, −10.01964700236298369508576815355, −8.923279150284456017556869776609, −7.71436577543590325351543099039, −6.98838990099278824135208410317, −5.77712902333679990431442284503, −4.73891676918031591053882963165, −3.80299289653462403240649702160, −1.61611817845193482616299093069,
1.70004287464726898479489097685, 3.45210746767560870796620410822, 4.54030010702666757945618285780, 5.10501131582974860702701787541, 7.41129512550228041091823128821, 7.71094210232712746539065497221, 8.630374984818019567432068687758, 10.22651244972262314629876087087, 11.24297518152982983392262875348, 11.57695847912462208025001833124