| L(s)  = 1  |   + (−1.70 − 1.70i)2-s   + (−0.414 − i)3-s   + 3.82i·4-s   + (0.707 − 0.292i)5-s   + (−1 + 2.41i)6-s   + (2.41 + i)7-s   + (3.12 − 3.12i)8-s   + (1.29 − 1.29i)9-s   + (−1.70 − 0.707i)10-s   + (1 − 2.41i)11-s   + (3.82 − 1.58i)12-s   − 1.41i·13-s   + (−2.41 − 5.82i)14-s   + (−0.585 − 0.585i)15-s   − 2.99·16-s    + ⋯ | 
 
| L(s)  = 1  |   + (−1.20 − 1.20i)2-s   + (−0.239 − 0.577i)3-s   + 1.91i·4-s   + (0.316 − 0.130i)5-s   + (−0.408 + 0.985i)6-s   + (0.912 + 0.377i)7-s   + (1.10 − 1.10i)8-s   + (0.430 − 0.430i)9-s   + (−0.539 − 0.223i)10-s   + (0.301 − 0.727i)11-s   + (1.10 − 0.457i)12-s   − 0.392i·13-s   + (−0.645 − 1.55i)14-s   + (−0.151 − 0.151i)15-s   − 0.749·16-s    + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 289 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.739 + 0.673i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 289 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.739 + 0.673i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(\approx\) | 
             \(0.271490 - 0.701142i\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(\approx\) | 
      
       \(0.271490 - 0.701142i\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | 
|---|
| bad | 17 |  \( 1 \)  | 
| good | 2 |  \( 1 + (1.70 + 1.70i)T + 2iT^{2} \)  | 
 | 3 |  \( 1 + (0.414 + i)T + (-2.12 + 2.12i)T^{2} \)  | 
 | 5 |  \( 1 + (-0.707 + 0.292i)T + (3.53 - 3.53i)T^{2} \)  | 
 | 7 |  \( 1 + (-2.41 - i)T + (4.94 + 4.94i)T^{2} \)  | 
 | 11 |  \( 1 + (-1 + 2.41i)T + (-7.77 - 7.77i)T^{2} \)  | 
 | 13 |  \( 1 + 1.41iT - 13T^{2} \)  | 
 | 19 |  \( 1 + (-0.585 - 0.585i)T + 19iT^{2} \)  | 
 | 23 |  \( 1 + (-1.82 + 4.41i)T + (-16.2 - 16.2i)T^{2} \)  | 
 | 29 |  \( 1 + (-0.292 + 0.121i)T + (20.5 - 20.5i)T^{2} \)  | 
 | 31 |  \( 1 + (-3 - 7.24i)T + (-21.9 + 21.9i)T^{2} \)  | 
 | 37 |  \( 1 + (3.53 + 8.53i)T + (-26.1 + 26.1i)T^{2} \)  | 
 | 41 |  \( 1 + (1.12 + 0.464i)T + (28.9 + 28.9i)T^{2} \)  | 
 | 43 |  \( 1 + (0.585 - 0.585i)T - 43iT^{2} \)  | 
 | 47 |  \( 1 + 5.17iT - 47T^{2} \)  | 
 | 53 |  \( 1 + (1 + i)T + 53iT^{2} \)  | 
 | 59 |  \( 1 + (-4.24 + 4.24i)T - 59iT^{2} \)  | 
 | 61 |  \( 1 + (-3.53 - 1.46i)T + (43.1 + 43.1i)T^{2} \)  | 
 | 67 |  \( 1 - 1.17T + 67T^{2} \)  | 
 | 71 |  \( 1 + (-2.07 - 5i)T + (-50.2 + 50.2i)T^{2} \)  | 
 | 73 |  \( 1 + (-11.9 + 4.94i)T + (51.6 - 51.6i)T^{2} \)  | 
 | 79 |  \( 1 + (1.82 - 4.41i)T + (-55.8 - 55.8i)T^{2} \)  | 
 | 83 |  \( 1 + (-8.24 - 8.24i)T + 83iT^{2} \)  | 
 | 89 |  \( 1 - 6.58iT - 89T^{2} \)  | 
 | 97 |  \( 1 + (9.53 - 3.94i)T + (68.5 - 68.5i)T^{2} \)  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−11.35744839125333621501163461376, −10.60517901344709138590636844044, −9.599966456818817038509583909295, −8.707909674742857097325868997505, −8.007822428863121218514808848182, −6.80626963673156935839003315127, −5.38782320588269174138720625006, −3.62111211106019833427220480376, −2.11198360201484559726294194152, −0.980382722009355875930489929294, 
1.63566644866198320671379263899, 4.35624260509463750072059396254, 5.31220489517812807633907312282, 6.52787799049123182009412936944, 7.47561759622645044163135159931, 8.170462251201709905868536595912, 9.435548459773123191366116116183, 9.930643406937352174356890668540, 10.81456568274008944841290721814, 11.77839884656162548735797852520