L(s) = 1 | + (−0.382 + 0.923i)2-s + (−3.89 − 2.60i)3-s + (2.12 + 2.12i)4-s + (4.60 − 0.915i)5-s + (3.89 − 2.60i)6-s + (−9.20 − 1.83i)7-s + (−6.46 + 2.67i)8-s + (4.97 + 12.0i)9-s + (−0.915 + 4.60i)10-s + (2.60 + 3.89i)11-s + (−2.74 − 13.8i)12-s + (7.07 − 7.07i)13-s + (5.21 − 7.79i)14-s + (−20.3 − 8.41i)15-s + 5.00i·16-s + ⋯ |
L(s) = 1 | + (−0.191 + 0.461i)2-s + (−1.29 − 0.868i)3-s + (0.530 + 0.530i)4-s + (0.920 − 0.183i)5-s + (0.649 − 0.434i)6-s + (−1.31 − 0.261i)7-s + (−0.808 + 0.334i)8-s + (0.552 + 1.33i)9-s + (−0.0915 + 0.460i)10-s + (0.236 + 0.354i)11-s + (−0.228 − 1.15i)12-s + (0.543 − 0.543i)13-s + (0.372 − 0.557i)14-s + (−1.35 − 0.561i)15-s + 0.312i·16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 289 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.528 - 0.848i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 289 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.528 - 0.848i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.294999 + 0.531397i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.294999 + 0.531397i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 17 | \( 1 \) |
good | 2 | \( 1 + (0.382 - 0.923i)T + (-2.82 - 2.82i)T^{2} \) |
| 3 | \( 1 + (3.89 + 2.60i)T + (3.44 + 8.31i)T^{2} \) |
| 5 | \( 1 + (-4.60 + 0.915i)T + (23.0 - 9.56i)T^{2} \) |
| 7 | \( 1 + (9.20 + 1.83i)T + (45.2 + 18.7i)T^{2} \) |
| 11 | \( 1 + (-2.60 - 3.89i)T + (-46.3 + 111. i)T^{2} \) |
| 13 | \( 1 + (-7.07 + 7.07i)T - 169iT^{2} \) |
| 19 | \( 1 + (6.88 - 16.6i)T + (-255. - 255. i)T^{2} \) |
| 23 | \( 1 + (7.79 - 5.21i)T + (202. - 488. i)T^{2} \) |
| 29 | \( 1 + (-10.0 - 50.6i)T + (-776. + 321. i)T^{2} \) |
| 31 | \( 1 + (20.8 - 31.1i)T + (-367. - 887. i)T^{2} \) |
| 37 | \( 1 + (3.89 + 2.60i)T + (523. + 1.26e3i)T^{2} \) |
| 41 | \( 1 + (9.20 + 1.83i)T + (1.55e3 + 643. i)T^{2} \) |
| 43 | \( 1 + (-14.5 - 35.1i)T + (-1.30e3 + 1.30e3i)T^{2} \) |
| 47 | \( 1 + (41.0 - 41.0i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + (6.88 - 16.6i)T + (-1.98e3 - 1.98e3i)T^{2} \) |
| 59 | \( 1 + (-68.3 + 28.3i)T + (2.46e3 - 2.46e3i)T^{2} \) |
| 61 | \( 1 + (4.57 - 23.0i)T + (-3.43e3 - 1.42e3i)T^{2} \) |
| 67 | \( 1 + 34iT - 4.48e3T^{2} \) |
| 71 | \( 1 + (70.1 + 46.9i)T + (1.92e3 + 4.65e3i)T^{2} \) |
| 73 | \( 1 + (-82.8 + 16.4i)T + (4.92e3 - 2.03e3i)T^{2} \) |
| 79 | \( 1 + (41.6 + 62.3i)T + (-2.38e3 + 5.76e3i)T^{2} \) |
| 83 | \( 1 + (-53.5 - 22.1i)T + (4.87e3 + 4.87e3i)T^{2} \) |
| 89 | \( 1 + (55.1 + 55.1i)T + 7.92e3iT^{2} \) |
| 97 | \( 1 + (-25.6 - 128. i)T + (-8.69e3 + 3.60e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.17267328015367703187177078871, −11.00432200228354313402583338843, −10.16623821797342075712951005057, −9.015968487030411774031122048866, −7.67714623397328716896120294642, −6.68578554716683976821758750805, −6.25570101360569127202676912412, −5.42605781872940648948115194778, −3.34197465307809387025784239304, −1.58442936996435373688810109722,
0.35914405222309323813317444074, 2.35931423392607325930287083144, 3.91138116070654602610068244502, 5.51026264780321191239312648354, 6.19844447851453581874089286976, 6.64526088542844494871960791453, 9.022961454886474870503235371521, 9.877545366995644126006254492009, 10.16364284273205743248891686440, 11.27022928820414186592089291420