Properties

Label 2-17e2-17.10-c2-0-25
Degree $2$
Conductor $289$
Sign $0.997 + 0.0641i$
Analytic cond. $7.87467$
Root an. cond. $2.80618$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.43 + 3.45i)2-s + (2.06 + 1.38i)3-s + (−7.07 − 7.07i)4-s + (1.12 − 0.223i)5-s + (−7.73 + 5.16i)6-s + (−5.36 − 1.06i)7-s + (20.7 − 8.59i)8-s + (−1.08 − 2.61i)9-s + (−0.835 + 4.20i)10-s + (−7.66 − 11.4i)11-s + (−4.84 − 24.3i)12-s + (−2.12 + 2.12i)13-s + (11.3 − 17.0i)14-s + (2.62 + 1.08i)15-s + 43.9i·16-s + ⋯
L(s)  = 1  + (−0.715 + 1.72i)2-s + (0.688 + 0.460i)3-s + (−1.76 − 1.76i)4-s + (0.224 − 0.0446i)5-s + (−1.28 + 0.860i)6-s + (−0.766 − 0.152i)7-s + (2.59 − 1.07i)8-s + (−0.120 − 0.290i)9-s + (−0.0835 + 0.420i)10-s + (−0.696 − 1.04i)11-s + (−0.403 − 2.03i)12-s + (−0.163 + 0.163i)13-s + (0.812 − 1.21i)14-s + (0.175 + 0.0725i)15-s + 2.74i·16-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 289 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 + 0.0641i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 289 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.997 + 0.0641i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(289\)    =    \(17^{2}\)
Sign: $0.997 + 0.0641i$
Analytic conductor: \(7.87467\)
Root analytic conductor: \(2.80618\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{289} (214, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 289,\ (\ :1),\ 0.997 + 0.0641i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.631081 - 0.0202534i\)
\(L(\frac12)\) \(\approx\) \(0.631081 - 0.0202534i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad17 \( 1 \)
good2 \( 1 + (1.43 - 3.45i)T + (-2.82 - 2.82i)T^{2} \)
3 \( 1 + (-2.06 - 1.38i)T + (3.44 + 8.31i)T^{2} \)
5 \( 1 + (-1.12 + 0.223i)T + (23.0 - 9.56i)T^{2} \)
7 \( 1 + (5.36 + 1.06i)T + (45.2 + 18.7i)T^{2} \)
11 \( 1 + (7.66 + 11.4i)T + (-46.3 + 111. i)T^{2} \)
13 \( 1 + (2.12 - 2.12i)T - 169iT^{2} \)
19 \( 1 + (-7.91 + 19.1i)T + (-255. - 255. i)T^{2} \)
23 \( 1 + (-14.3 + 9.58i)T + (202. - 488. i)T^{2} \)
29 \( 1 + (4.78 + 24.0i)T + (-776. + 321. i)T^{2} \)
31 \( 1 + (-2.89 + 4.33i)T + (-367. - 887. i)T^{2} \)
37 \( 1 + (-18.0 - 12.0i)T + (523. + 1.26e3i)T^{2} \)
41 \( 1 + (68.3 + 13.6i)T + (1.55e3 + 643. i)T^{2} \)
43 \( 1 + (-23.2 - 56.0i)T + (-1.30e3 + 1.30e3i)T^{2} \)
47 \( 1 + (50.5 - 50.5i)T - 2.20e3iT^{2} \)
53 \( 1 + (0.756 - 1.82i)T + (-1.98e3 - 1.98e3i)T^{2} \)
59 \( 1 + (-21.6 + 8.97i)T + (2.46e3 - 2.46e3i)T^{2} \)
61 \( 1 + (-20.5 + 103. i)T + (-3.43e3 - 1.42e3i)T^{2} \)
67 \( 1 - 0.440iT - 4.48e3T^{2} \)
71 \( 1 + (50.1 + 33.4i)T + (1.92e3 + 4.65e3i)T^{2} \)
73 \( 1 + (-34.6 + 6.89i)T + (4.92e3 - 2.03e3i)T^{2} \)
79 \( 1 + (2.51 + 3.75i)T + (-2.38e3 + 5.76e3i)T^{2} \)
83 \( 1 + (27.8 + 11.5i)T + (4.87e3 + 4.87e3i)T^{2} \)
89 \( 1 + (-17.0 - 17.0i)T + 7.92e3iT^{2} \)
97 \( 1 + (34.6 + 174. i)T + (-8.69e3 + 3.60e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.24316150991463836063479206101, −9.892135304127828812777026766678, −9.495468898073429441554651425172, −8.599810855739805280653451122680, −7.85013286472009018277468407980, −6.67180590676517144706398103598, −5.92046616070568855547143845124, −4.73630247953902449195492865233, −3.18218030051697978643211047777, −0.35937710445191528736759597965, 1.70560006020230141506821672046, 2.63488596769310938769041194994, 3.62080126084957411011989374918, 5.19740882391173000719021748127, 7.22131543584879949221579383483, 8.090491831709599836502661601156, 8.995885044028183646549423714935, 9.951415719642421298691825850680, 10.36407063697386597346012916655, 11.62465975221676589031209681204

Graph of the $Z$-function along the critical line