Properties

Label 2-17e2-1.1-c1-0-7
Degree $2$
Conductor $289$
Sign $1$
Analytic cond. $2.30767$
Root an. cond. $1.51910$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.41·2-s − 1.08·3-s + 3.82·4-s + 0.765·5-s − 2.61·6-s + 2.61·7-s + 4.41·8-s − 1.82·9-s + 1.84·10-s − 2.61·11-s − 4.14·12-s + 1.41·13-s + 6.30·14-s − 0.828·15-s + 2.99·16-s − 4.41·18-s − 0.828·19-s + 2.93·20-s − 2.82·21-s − 6.30·22-s + 4.77·23-s − 4.77·24-s − 4.41·25-s + 3.41·26-s + 5.22·27-s + 10.0·28-s − 0.317·29-s + ⋯
L(s)  = 1  + 1.70·2-s − 0.624·3-s + 1.91·4-s + 0.342·5-s − 1.06·6-s + 0.987·7-s + 1.56·8-s − 0.609·9-s + 0.584·10-s − 0.787·11-s − 1.19·12-s + 0.392·13-s + 1.68·14-s − 0.213·15-s + 0.749·16-s − 1.04·18-s − 0.190·19-s + 0.655·20-s − 0.617·21-s − 1.34·22-s + 0.996·23-s − 0.975·24-s − 0.882·25-s + 0.669·26-s + 1.00·27-s + 1.89·28-s − 0.0588·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 289 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 289 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(289\)    =    \(17^{2}\)
Sign: $1$
Analytic conductor: \(2.30767\)
Root analytic conductor: \(1.51910\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 289,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.785029602\)
\(L(\frac12)\) \(\approx\) \(2.785029602\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad17 \( 1 \)
good2 \( 1 - 2.41T + 2T^{2} \)
3 \( 1 + 1.08T + 3T^{2} \)
5 \( 1 - 0.765T + 5T^{2} \)
7 \( 1 - 2.61T + 7T^{2} \)
11 \( 1 + 2.61T + 11T^{2} \)
13 \( 1 - 1.41T + 13T^{2} \)
19 \( 1 + 0.828T + 19T^{2} \)
23 \( 1 - 4.77T + 23T^{2} \)
29 \( 1 + 0.317T + 29T^{2} \)
31 \( 1 + 7.83T + 31T^{2} \)
37 \( 1 + 9.23T + 37T^{2} \)
41 \( 1 + 1.21T + 41T^{2} \)
43 \( 1 - 0.828T + 43T^{2} \)
47 \( 1 - 5.17T + 47T^{2} \)
53 \( 1 - 1.41T + 53T^{2} \)
59 \( 1 - 6T + 59T^{2} \)
61 \( 1 + 3.82T + 61T^{2} \)
67 \( 1 + 1.17T + 67T^{2} \)
71 \( 1 - 5.41T + 71T^{2} \)
73 \( 1 - 12.9T + 73T^{2} \)
79 \( 1 - 4.77T + 79T^{2} \)
83 \( 1 - 11.6T + 83T^{2} \)
89 \( 1 - 6.58T + 89T^{2} \)
97 \( 1 - 10.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.90996728307536461547427962426, −11.14173693563021234848340268957, −10.60391179595580500878044548809, −8.853845611970115535704271635628, −7.58088950642159042609611193781, −6.39611600354465424705721741657, −5.40278583616651330302747547773, −5.00838283148238606310744589930, −3.57316857708155970604272859617, −2.15038013449597672696834321091, 2.15038013449597672696834321091, 3.57316857708155970604272859617, 5.00838283148238606310744589930, 5.40278583616651330302747547773, 6.39611600354465424705721741657, 7.58088950642159042609611193781, 8.853845611970115535704271635628, 10.60391179595580500878044548809, 11.14173693563021234848340268957, 11.90996728307536461547427962426

Graph of the $Z$-function along the critical line