Properties

Label 2-177-59.20-c1-0-8
Degree $2$
Conductor $177$
Sign $0.432 + 0.901i$
Analytic cond. $1.41335$
Root an. cond. $1.18884$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.308 − 0.142i)2-s + (0.947 − 0.319i)3-s + (−1.22 − 1.43i)4-s + (1.54 − 0.929i)5-s + (−0.337 − 0.0367i)6-s + (0.0319 + 0.589i)7-s + (0.353 + 1.27i)8-s + (0.796 − 0.605i)9-s + (−0.609 + 0.0662i)10-s + (−0.750 − 4.57i)11-s + (−1.61 − 0.971i)12-s + (−0.956 − 0.727i)13-s + (0.0742 − 0.186i)14-s + (1.16 − 1.37i)15-s + (−0.537 + 3.27i)16-s + (0.157 − 2.90i)17-s + ⋯
L(s)  = 1  + (−0.218 − 0.100i)2-s + (0.547 − 0.184i)3-s + (−0.610 − 0.718i)4-s + (0.691 − 0.415i)5-s + (−0.137 − 0.0149i)6-s + (0.0120 + 0.222i)7-s + (0.124 + 0.449i)8-s + (0.265 − 0.201i)9-s + (−0.192 + 0.0209i)10-s + (−0.226 − 1.38i)11-s + (−0.466 − 0.280i)12-s + (−0.265 − 0.201i)13-s + (0.0198 − 0.0498i)14-s + (0.301 − 0.354i)15-s + (−0.134 + 0.819i)16-s + (0.0381 − 0.703i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.432 + 0.901i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.432 + 0.901i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(177\)    =    \(3 \cdot 59\)
Sign: $0.432 + 0.901i$
Analytic conductor: \(1.41335\)
Root analytic conductor: \(1.18884\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{177} (79, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 177,\ (\ :1/2),\ 0.432 + 0.901i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.00017 - 0.629302i\)
\(L(\frac12)\) \(\approx\) \(1.00017 - 0.629302i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.947 + 0.319i)T \)
59 \( 1 + (-2.44 - 7.28i)T \)
good2 \( 1 + (0.308 + 0.142i)T + (1.29 + 1.52i)T^{2} \)
5 \( 1 + (-1.54 + 0.929i)T + (2.34 - 4.41i)T^{2} \)
7 \( 1 + (-0.0319 - 0.589i)T + (-6.95 + 0.756i)T^{2} \)
11 \( 1 + (0.750 + 4.57i)T + (-10.4 + 3.51i)T^{2} \)
13 \( 1 + (0.956 + 0.727i)T + (3.47 + 12.5i)T^{2} \)
17 \( 1 + (-0.157 + 2.90i)T + (-16.9 - 1.83i)T^{2} \)
19 \( 1 + (-5.21 - 4.94i)T + (1.02 + 18.9i)T^{2} \)
23 \( 1 + (-5.34 - 1.17i)T + (20.8 + 9.65i)T^{2} \)
29 \( 1 + (4.53 - 2.09i)T + (18.7 - 22.1i)T^{2} \)
31 \( 1 + (4.92 - 4.66i)T + (1.67 - 30.9i)T^{2} \)
37 \( 1 + (0.764 - 2.75i)T + (-31.7 - 19.0i)T^{2} \)
41 \( 1 + (2.79 - 0.614i)T + (37.2 - 17.2i)T^{2} \)
43 \( 1 + (0.804 - 4.90i)T + (-40.7 - 13.7i)T^{2} \)
47 \( 1 + (-5.30 - 3.18i)T + (22.0 + 41.5i)T^{2} \)
53 \( 1 + (0.142 + 0.0155i)T + (51.7 + 11.3i)T^{2} \)
61 \( 1 + (9.25 + 4.28i)T + (39.4 + 46.4i)T^{2} \)
67 \( 1 + (1.40 + 5.04i)T + (-57.4 + 34.5i)T^{2} \)
71 \( 1 + (0.0797 + 0.0479i)T + (33.2 + 62.7i)T^{2} \)
73 \( 1 + (2.00 - 5.03i)T + (-52.9 - 50.2i)T^{2} \)
79 \( 1 + (-7.76 - 2.61i)T + (62.8 + 47.8i)T^{2} \)
83 \( 1 + (8.21 + 12.1i)T + (-30.7 + 77.1i)T^{2} \)
89 \( 1 + (-11.9 + 5.53i)T + (57.6 - 67.8i)T^{2} \)
97 \( 1 + (6.18 + 15.5i)T + (-70.4 + 66.7i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.79336357636606188846254876468, −11.41587417349391352640465249727, −10.31207675905415811768601450950, −9.313887819453175128255891522997, −8.802061082421132931726567801797, −7.54790565924188700152841256003, −5.83198670437205533416515511118, −5.16907144527504689331475854314, −3.24353088352944635213284952259, −1.35492738265947295920668128844, 2.41594396553028655870298240102, 3.91735651872127571244121064983, 5.13721794069753494037548538142, 7.00053101236832032806481965813, 7.64836250820611116128689643355, 9.066313503064376954218437873228, 9.613457694932235821106605906424, 10.61071114000989805474261561712, 12.07385158299174827118213480514, 13.09434895159838562498398969765

Graph of the $Z$-function along the critical line