L(s) = 1 | + (1.28 − 0.586i)2-s + (0.586 − 0.586i)3-s + (1.31 − 1.50i)4-s + (−1.32 − 1.32i)5-s + (0.411 − 1.09i)6-s + 1.42i·7-s + (0.805 − 2.71i)8-s + 2.31i·9-s + (−2.47 − 0.926i)10-s + (−0.707 − 0.707i)11-s + (−0.114 − 1.65i)12-s + (−1.74 + 1.74i)13-s + (0.832 + 1.82i)14-s − 1.54·15-s + (−0.552 − 3.96i)16-s + 6.99·17-s + ⋯ |
L(s) = 1 | + (0.910 − 0.414i)2-s + (0.338 − 0.338i)3-s + (0.656 − 0.754i)4-s + (−0.590 − 0.590i)5-s + (0.167 − 0.448i)6-s + 0.537i·7-s + (0.284 − 0.958i)8-s + 0.770i·9-s + (−0.782 − 0.292i)10-s + (−0.213 − 0.213i)11-s + (−0.0331 − 0.477i)12-s + (−0.482 + 0.482i)13-s + (0.222 + 0.488i)14-s − 0.400·15-s + (−0.138 − 0.990i)16-s + 1.69·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.506 + 0.862i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 176 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.506 + 0.862i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.64410 - 0.940891i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.64410 - 0.940891i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.28 + 0.586i)T \) |
| 11 | \( 1 + (0.707 + 0.707i)T \) |
good | 3 | \( 1 + (-0.586 + 0.586i)T - 3iT^{2} \) |
| 5 | \( 1 + (1.32 + 1.32i)T + 5iT^{2} \) |
| 7 | \( 1 - 1.42iT - 7T^{2} \) |
| 13 | \( 1 + (1.74 - 1.74i)T - 13iT^{2} \) |
| 17 | \( 1 - 6.99T + 17T^{2} \) |
| 19 | \( 1 + (3.48 - 3.48i)T - 19iT^{2} \) |
| 23 | \( 1 - 4.79iT - 23T^{2} \) |
| 29 | \( 1 + (-3.38 + 3.38i)T - 29iT^{2} \) |
| 31 | \( 1 + 8.04T + 31T^{2} \) |
| 37 | \( 1 + (4.09 + 4.09i)T + 37iT^{2} \) |
| 41 | \( 1 - 5.85iT - 41T^{2} \) |
| 43 | \( 1 + (3.09 + 3.09i)T + 43iT^{2} \) |
| 47 | \( 1 + 8.12T + 47T^{2} \) |
| 53 | \( 1 + (-0.759 - 0.759i)T + 53iT^{2} \) |
| 59 | \( 1 + (0.513 + 0.513i)T + 59iT^{2} \) |
| 61 | \( 1 + (-0.211 + 0.211i)T - 61iT^{2} \) |
| 67 | \( 1 + (-0.116 + 0.116i)T - 67iT^{2} \) |
| 71 | \( 1 + 9.46iT - 71T^{2} \) |
| 73 | \( 1 + 7.55iT - 73T^{2} \) |
| 79 | \( 1 - 8.55T + 79T^{2} \) |
| 83 | \( 1 + (-7.36 + 7.36i)T - 83iT^{2} \) |
| 89 | \( 1 - 2.68iT - 89T^{2} \) |
| 97 | \( 1 + 15.2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.40388000193432887267715346599, −11.99493681703418838648522486766, −10.78893188738063612379133266093, −9.691577621744629240216444275942, −8.280779018005384455581630284630, −7.40319265247117702815011598845, −5.82379556150558926564632219376, −4.84743254656332924167516206599, −3.46174778020870897351321714803, −1.90901546532702170384354139076,
2.99754421876959378699347313631, 3.87076134641849719957577952545, 5.17890179523264759313165165811, 6.67251551804783985519901297433, 7.44989553161865205178339994401, 8.543911677762268319955564594942, 10.07628587502780602349513345552, 10.98985508231822278945888708155, 12.15534748108069616514181036369, 12.80747907346369996469753564601