L(s) = 1 | + (−2.97 + 9.14i)3-s + (13.5 − 9.82i)5-s + (−6.15 − 18.9i)7-s + (−52.8 − 38.4i)9-s + (−17.1 − 32.2i)11-s + (−32.0 − 23.2i)13-s + (49.6 + 152. i)15-s + (1.66 − 1.21i)17-s + (31.3 − 96.4i)19-s + 191.·21-s − 110.·23-s + (47.7 − 146. i)25-s + (298. − 216. i)27-s + (−10.3 − 31.7i)29-s + (140. + 102. i)31-s + ⋯ |
L(s) = 1 | + (−0.571 + 1.75i)3-s + (1.20 − 0.878i)5-s + (−0.332 − 1.02i)7-s + (−1.95 − 1.42i)9-s + (−0.470 − 0.882i)11-s + (−0.683 − 0.496i)13-s + (0.854 + 2.62i)15-s + (0.0237 − 0.0172i)17-s + (0.378 − 1.16i)19-s + 1.98·21-s − 1.00·23-s + (0.381 − 1.17i)25-s + (2.12 − 1.54i)27-s + (−0.0660 − 0.203i)29-s + (0.814 + 0.591i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.490 + 0.871i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 176 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.490 + 0.871i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.904801 - 0.528720i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.904801 - 0.528720i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 + (17.1 + 32.2i)T \) |
good | 3 | \( 1 + (2.97 - 9.14i)T + (-21.8 - 15.8i)T^{2} \) |
| 5 | \( 1 + (-13.5 + 9.82i)T + (38.6 - 118. i)T^{2} \) |
| 7 | \( 1 + (6.15 + 18.9i)T + (-277. + 201. i)T^{2} \) |
| 13 | \( 1 + (32.0 + 23.2i)T + (678. + 2.08e3i)T^{2} \) |
| 17 | \( 1 + (-1.66 + 1.21i)T + (1.51e3 - 4.67e3i)T^{2} \) |
| 19 | \( 1 + (-31.3 + 96.4i)T + (-5.54e3 - 4.03e3i)T^{2} \) |
| 23 | \( 1 + 110.T + 1.21e4T^{2} \) |
| 29 | \( 1 + (10.3 + 31.7i)T + (-1.97e4 + 1.43e4i)T^{2} \) |
| 31 | \( 1 + (-140. - 102. i)T + (9.20e3 + 2.83e4i)T^{2} \) |
| 37 | \( 1 + (-77.6 - 239. i)T + (-4.09e4 + 2.97e4i)T^{2} \) |
| 41 | \( 1 + (59.5 - 183. i)T + (-5.57e4 - 4.05e4i)T^{2} \) |
| 43 | \( 1 + 304.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-10.5 + 32.4i)T + (-8.39e4 - 6.10e4i)T^{2} \) |
| 53 | \( 1 + (175. + 127. i)T + (4.60e4 + 1.41e5i)T^{2} \) |
| 59 | \( 1 + (-4.96 - 15.2i)T + (-1.66e5 + 1.20e5i)T^{2} \) |
| 61 | \( 1 + (-429. + 312. i)T + (7.01e4 - 2.15e5i)T^{2} \) |
| 67 | \( 1 + 636.T + 3.00e5T^{2} \) |
| 71 | \( 1 + (-227. + 165. i)T + (1.10e5 - 3.40e5i)T^{2} \) |
| 73 | \( 1 + (202. + 624. i)T + (-3.14e5 + 2.28e5i)T^{2} \) |
| 79 | \( 1 + (-652. - 473. i)T + (1.52e5 + 4.68e5i)T^{2} \) |
| 83 | \( 1 + (-516. + 375. i)T + (1.76e5 - 5.43e5i)T^{2} \) |
| 89 | \( 1 - 1.14e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + (679. + 493. i)T + (2.82e5 + 8.68e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.85339238485171769157562846335, −10.72753268706213257926115059850, −10.00788104275642552242145934328, −9.504439011733952415925016497404, −8.345310965184241847263349933523, −6.35315818962101808498696513088, −5.29515790705547921475695407407, −4.62044949120761637638337777063, −3.15315562785271811322050836101, −0.48211533375631553394247737783,
1.90291472654983951010368085768, 2.49802703411646590584199988323, 5.47197762124456495600207366888, 6.13822456243583401628053455510, 6.99513957028602411789480183532, 7.970742497729579019910019603663, 9.500989307722976059342556781691, 10.45417285755641464298666564193, 11.86385124298826430190076538593, 12.32388066973210007255481524639