L(s) = 1 | + 31·2-s + 705·4-s − 2.40e3·7-s + 1.39e4·8-s + 6.56e3·9-s + 1.31e4·11-s − 7.44e4·14-s + 2.51e5·16-s + 2.03e5·18-s + 4.07e5·22-s + 2.09e4·23-s − 1.69e6·28-s + 1.08e5·29-s + 4.21e6·32-s + 4.62e6·36-s + 2.07e6·37-s + 6.72e6·43-s + 9.27e6·44-s + 6.48e5·46-s + 5.76e6·49-s − 1.53e7·53-s − 3.34e7·56-s + 3.35e6·58-s − 1.57e7·63-s + 6.65e7·64-s + 1.58e7·67-s − 4.23e7·71-s + ⋯ |
L(s) = 1 | + 1.93·2-s + 2.75·4-s − 7-s + 3.39·8-s + 9-s + 0.898·11-s − 1.93·14-s + 3.83·16-s + 1.93·18-s + 1.74·22-s + 0.0747·23-s − 2.75·28-s + 0.152·29-s + 4.02·32-s + 2.75·36-s + 1.10·37-s + 1.96·43-s + 2.47·44-s + 0.144·46-s + 49-s − 1.94·53-s − 3.39·56-s + 0.296·58-s − 63-s + 3.96·64-s + 0.786·67-s − 1.66·71-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)Λ(9−s)
Λ(s)=(=(175s/2ΓC(s+4)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
1
|
Analytic conductor: |
71.2912 |
Root analytic conductor: |
8.44341 |
Motivic weight: |
8 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ175(76,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :4), 1)
|
Particular Values
L(29) |
≈ |
8.689081882 |
L(21) |
≈ |
8.689081882 |
L(5) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 7 | 1+p4T |
good | 2 | 1−31T+p8T2 |
| 3 | (1−p4T)(1+p4T) |
| 11 | 1−13154T+p8T2 |
| 13 | (1−p4T)(1+p4T) |
| 17 | (1−p4T)(1+p4T) |
| 19 | (1−p4T)(1+p4T) |
| 23 | 1−20926T+p8T2 |
| 29 | 1−108194T+p8T2 |
| 31 | (1−p4T)(1+p4T) |
| 37 | 1−2073886T+p8T2 |
| 41 | (1−p4T)(1+p4T) |
| 43 | 1−6726046T+p8T2 |
| 47 | (1−p4T)(1+p4T) |
| 53 | 1+15377762T+p8T2 |
| 59 | (1−p4T)(1+p4T) |
| 61 | (1−p4T)(1+p4T) |
| 67 | 1−15839326T+p8T2 |
| 71 | 1+42331966T+p8T2 |
| 73 | (1−p4T)(1+p4T) |
| 79 | 1+64606846T+p8T2 |
| 83 | (1−p4T)(1+p4T) |
| 89 | (1−p4T)(1+p4T) |
| 97 | (1−p4T)(1+p4T) |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.62360575641308332786420220942, −10.57156358883316207945803237264, −9.483441745867234965478944743745, −7.51274088293784108999009292991, −6.64463201012051924082240774883, −5.91126240349294564794769788184, −4.52116871855317945142999139154, −3.78357905619237699182705988646, −2.67909132520827277110527058471, −1.30334214930380591256777708099,
1.30334214930380591256777708099, 2.67909132520827277110527058471, 3.78357905619237699182705988646, 4.52116871855317945142999139154, 5.91126240349294564794769788184, 6.64463201012051924082240774883, 7.51274088293784108999009292991, 9.483441745867234965478944743745, 10.57156358883316207945803237264, 11.62360575641308332786420220942