L(s) = 1 | − 9·2-s + 17·4-s + 343·7-s + 423·8-s + 729·9-s + 1.96e3·11-s − 3.08e3·14-s − 4.89e3·16-s − 6.56e3·18-s − 1.76e4·22-s + 2.27e4·23-s + 5.83e3·28-s − 2.12e4·29-s + 1.69e4·32-s + 1.23e4·36-s − 1.01e5·37-s + 1.26e5·43-s + 3.33e4·44-s − 2.04e5·46-s + 1.17e5·49-s − 5.03e4·53-s + 1.45e5·56-s + 1.90e5·58-s + 2.50e5·63-s + 1.60e5·64-s + 5.39e4·67-s − 2.42e5·71-s + ⋯ |
L(s) = 1 | − 9/8·2-s + 0.265·4-s + 7-s + 0.826·8-s + 9-s + 1.47·11-s − 9/8·14-s − 1.19·16-s − 9/8·18-s − 1.65·22-s + 1.86·23-s + 0.265·28-s − 0.870·29-s + 0.518·32-s + 0.265·36-s − 1.99·37-s + 1.59·43-s + 0.391·44-s − 2.10·46-s + 49-s − 0.338·53-s + 0.826·56-s + 0.978·58-s + 63-s + 0.612·64-s + 0.179·67-s − 0.677·71-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)Λ(7−s)
Λ(s)=(=(175s/2ΓC(s+3)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
1
|
Analytic conductor: |
40.2594 |
Root analytic conductor: |
6.34503 |
Motivic weight: |
6 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ175(76,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :3), 1)
|
Particular Values
L(27) |
≈ |
1.505468153 |
L(21) |
≈ |
1.505468153 |
L(4) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 7 | 1−p3T |
good | 2 | 1+9T+p6T2 |
| 3 | (1−p3T)(1+p3T) |
| 11 | 1−1962T+p6T2 |
| 13 | (1−p3T)(1+p3T) |
| 17 | (1−p3T)(1+p3T) |
| 19 | (1−p3T)(1+p3T) |
| 23 | 1−22734T+p6T2 |
| 29 | 1+21222T+p6T2 |
| 31 | (1−p3T)(1+p3T) |
| 37 | 1+101194T+p6T2 |
| 41 | (1−p3T)(1+p3T) |
| 43 | 1−126614T+p6T2 |
| 47 | (1−p3T)(1+p3T) |
| 53 | 1+50346T+p6T2 |
| 59 | (1−p3T)(1+p3T) |
| 61 | (1−p3T)(1+p3T) |
| 67 | 1−53926T+p6T2 |
| 71 | 1+242478T+p6T2 |
| 73 | (1−p3T)(1+p3T) |
| 79 | 1−929378T+p6T2 |
| 83 | (1−p3T)(1+p3T) |
| 89 | (1−p3T)(1+p3T) |
| 97 | (1−p3T)(1+p3T) |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.27458980478997798340008996115, −10.54036072421872383781365389031, −9.341515849022850901502772137087, −8.815265848002092986598830121936, −7.57620396673476033871019608336, −6.84022310351593936032661302339, −5.00859433059883282736261187573, −3.95719686563469584801833236872, −1.73276481640633712775694300103, −0.964393566757617540893754953678,
0.964393566757617540893754953678, 1.73276481640633712775694300103, 3.95719686563469584801833236872, 5.00859433059883282736261187573, 6.84022310351593936032661302339, 7.57620396673476033871019608336, 8.815265848002092986598830121936, 9.341515849022850901502772137087, 10.54036072421872383781365389031, 11.27458980478997798340008996115