Properties

Label 2-175-7.6-c6-0-41
Degree $2$
Conductor $175$
Sign $1$
Analytic cond. $40.2594$
Root an. cond. $6.34503$
Motivic weight $6$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9·2-s + 17·4-s + 343·7-s + 423·8-s + 729·9-s + 1.96e3·11-s − 3.08e3·14-s − 4.89e3·16-s − 6.56e3·18-s − 1.76e4·22-s + 2.27e4·23-s + 5.83e3·28-s − 2.12e4·29-s + 1.69e4·32-s + 1.23e4·36-s − 1.01e5·37-s + 1.26e5·43-s + 3.33e4·44-s − 2.04e5·46-s + 1.17e5·49-s − 5.03e4·53-s + 1.45e5·56-s + 1.90e5·58-s + 2.50e5·63-s + 1.60e5·64-s + 5.39e4·67-s − 2.42e5·71-s + ⋯
L(s)  = 1  − 9/8·2-s + 0.265·4-s + 7-s + 0.826·8-s + 9-s + 1.47·11-s − 9/8·14-s − 1.19·16-s − 9/8·18-s − 1.65·22-s + 1.86·23-s + 0.265·28-s − 0.870·29-s + 0.518·32-s + 0.265·36-s − 1.99·37-s + 1.59·43-s + 0.391·44-s − 2.10·46-s + 49-s − 0.338·53-s + 0.826·56-s + 0.978·58-s + 63-s + 0.612·64-s + 0.179·67-s − 0.677·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(40.2594\)
Root analytic conductor: \(6.34503\)
Motivic weight: \(6\)
Rational: yes
Arithmetic: yes
Character: $\chi_{175} (76, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :3),\ 1)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(1.505468153\)
\(L(\frac12)\) \(\approx\) \(1.505468153\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 - p^{3} T \)
good2 \( 1 + 9 T + p^{6} T^{2} \)
3 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
11 \( 1 - 1962 T + p^{6} T^{2} \)
13 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
17 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
19 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
23 \( 1 - 22734 T + p^{6} T^{2} \)
29 \( 1 + 21222 T + p^{6} T^{2} \)
31 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
37 \( 1 + 101194 T + p^{6} T^{2} \)
41 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
43 \( 1 - 126614 T + p^{6} T^{2} \)
47 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
53 \( 1 + 50346 T + p^{6} T^{2} \)
59 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
61 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
67 \( 1 - 53926 T + p^{6} T^{2} \)
71 \( 1 + 242478 T + p^{6} T^{2} \)
73 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
79 \( 1 - 929378 T + p^{6} T^{2} \)
83 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
89 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
97 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.27458980478997798340008996115, −10.54036072421872383781365389031, −9.341515849022850901502772137087, −8.815265848002092986598830121936, −7.57620396673476033871019608336, −6.84022310351593936032661302339, −5.00859433059883282736261187573, −3.95719686563469584801833236872, −1.73276481640633712775694300103, −0.964393566757617540893754953678, 0.964393566757617540893754953678, 1.73276481640633712775694300103, 3.95719686563469584801833236872, 5.00859433059883282736261187573, 6.84022310351593936032661302339, 7.57620396673476033871019608336, 8.815265848002092986598830121936, 9.341515849022850901502772137087, 10.54036072421872383781365389031, 11.27458980478997798340008996115

Graph of the $Z$-function along the critical line