Properties

Label 2-175-7.6-c4-0-16
Degree $2$
Conductor $175$
Sign $1$
Analytic cond. $18.0897$
Root an. cond. $4.25320$
Motivic weight $4$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 15·4-s − 49·7-s + 31·8-s + 81·9-s − 206·11-s + 49·14-s + 209·16-s − 81·18-s + 206·22-s + 734·23-s + 735·28-s + 1.23e3·29-s − 705·32-s − 1.21e3·36-s + 1.29e3·37-s + 334·43-s + 3.09e3·44-s − 734·46-s + 2.40e3·49-s + 5.58e3·53-s − 1.51e3·56-s − 1.23e3·58-s − 3.96e3·63-s − 2.63e3·64-s − 4.94e3·67-s + 2.91e3·71-s + ⋯
L(s)  = 1  − 1/4·2-s − 0.937·4-s − 7-s + 0.484·8-s + 9-s − 1.70·11-s + 1/4·14-s + 0.816·16-s − 1/4·18-s + 0.425·22-s + 1.38·23-s + 0.937·28-s + 1.46·29-s − 0.688·32-s − 0.937·36-s + 0.945·37-s + 0.180·43-s + 1.59·44-s − 0.346·46-s + 49-s + 1.98·53-s − 0.484·56-s − 0.366·58-s − 63-s − 0.644·64-s − 1.10·67-s + 0.578·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(18.0897\)
Root analytic conductor: \(4.25320\)
Motivic weight: \(4\)
Rational: yes
Arithmetic: yes
Character: $\chi_{175} (76, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :2),\ 1)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(0.9867361074\)
\(L(\frac12)\) \(\approx\) \(0.9867361074\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 + p^{2} T \)
good2 \( 1 + T + p^{4} T^{2} \)
3 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
11 \( 1 + 206 T + p^{4} T^{2} \)
13 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
17 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
19 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
23 \( 1 - 734 T + p^{4} T^{2} \)
29 \( 1 - 1234 T + p^{4} T^{2} \)
31 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
37 \( 1 - 1294 T + p^{4} T^{2} \)
41 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
43 \( 1 - 334 T + p^{4} T^{2} \)
47 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
53 \( 1 - 5582 T + p^{4} T^{2} \)
59 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
61 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
67 \( 1 + 4946 T + p^{4} T^{2} \)
71 \( 1 - 2914 T + p^{4} T^{2} \)
73 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
79 \( 1 + 3646 T + p^{4} T^{2} \)
83 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
89 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
97 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.37396704661604279665517269154, −10.60038750242078630535181495454, −10.05956102446464702736683688807, −9.107635617850217560071374193435, −7.980395253428300847907467820821, −6.94646205341092811241512731591, −5.43088154739179142616086833158, −4.35669123879986398134206051716, −2.88269957781567645021396316359, −0.72213723308991920344142610595, 0.72213723308991920344142610595, 2.88269957781567645021396316359, 4.35669123879986398134206051716, 5.43088154739179142616086833158, 6.94646205341092811241512731591, 7.980395253428300847907467820821, 9.107635617850217560071374193435, 10.05956102446464702736683688807, 10.60038750242078630535181495454, 12.37396704661604279665517269154

Graph of the $Z$-function along the critical line