L(s) = 1 | − 2-s − 15·4-s − 49·7-s + 31·8-s + 81·9-s − 206·11-s + 49·14-s + 209·16-s − 81·18-s + 206·22-s + 734·23-s + 735·28-s + 1.23e3·29-s − 705·32-s − 1.21e3·36-s + 1.29e3·37-s + 334·43-s + 3.09e3·44-s − 734·46-s + 2.40e3·49-s + 5.58e3·53-s − 1.51e3·56-s − 1.23e3·58-s − 3.96e3·63-s − 2.63e3·64-s − 4.94e3·67-s + 2.91e3·71-s + ⋯ |
L(s) = 1 | − 1/4·2-s − 0.937·4-s − 7-s + 0.484·8-s + 9-s − 1.70·11-s + 1/4·14-s + 0.816·16-s − 1/4·18-s + 0.425·22-s + 1.38·23-s + 0.937·28-s + 1.46·29-s − 0.688·32-s − 0.937·36-s + 0.945·37-s + 0.180·43-s + 1.59·44-s − 0.346·46-s + 49-s + 1.98·53-s − 0.484·56-s − 0.366·58-s − 63-s − 0.644·64-s − 1.10·67-s + 0.578·71-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)Λ(5−s)
Λ(s)=(=(175s/2ΓC(s+2)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
1
|
Analytic conductor: |
18.0897 |
Root analytic conductor: |
4.25320 |
Motivic weight: |
4 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ175(76,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :2), 1)
|
Particular Values
L(25) |
≈ |
0.9867361074 |
L(21) |
≈ |
0.9867361074 |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 7 | 1+p2T |
good | 2 | 1+T+p4T2 |
| 3 | (1−p2T)(1+p2T) |
| 11 | 1+206T+p4T2 |
| 13 | (1−p2T)(1+p2T) |
| 17 | (1−p2T)(1+p2T) |
| 19 | (1−p2T)(1+p2T) |
| 23 | 1−734T+p4T2 |
| 29 | 1−1234T+p4T2 |
| 31 | (1−p2T)(1+p2T) |
| 37 | 1−1294T+p4T2 |
| 41 | (1−p2T)(1+p2T) |
| 43 | 1−334T+p4T2 |
| 47 | (1−p2T)(1+p2T) |
| 53 | 1−5582T+p4T2 |
| 59 | (1−p2T)(1+p2T) |
| 61 | (1−p2T)(1+p2T) |
| 67 | 1+4946T+p4T2 |
| 71 | 1−2914T+p4T2 |
| 73 | (1−p2T)(1+p2T) |
| 79 | 1+3646T+p4T2 |
| 83 | (1−p2T)(1+p2T) |
| 89 | (1−p2T)(1+p2T) |
| 97 | (1−p2T)(1+p2T) |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.37396704661604279665517269154, −10.60038750242078630535181495454, −10.05956102446464702736683688807, −9.107635617850217560071374193435, −7.980395253428300847907467820821, −6.94646205341092811241512731591, −5.43088154739179142616086833158, −4.35669123879986398134206051716, −2.88269957781567645021396316359, −0.72213723308991920344142610595,
0.72213723308991920344142610595, 2.88269957781567645021396316359, 4.35669123879986398134206051716, 5.43088154739179142616086833158, 6.94646205341092811241512731591, 7.980395253428300847907467820821, 9.107635617850217560071374193435, 10.05956102446464702736683688807, 10.60038750242078630535181495454, 12.37396704661604279665517269154