L(s) = 1 | + (−2.59 − 1.5i)2-s + (1.73 − i)3-s + (0.5 + 0.866i)4-s − 6·6-s + (−12.1 − 14i)7-s + 21i·8-s + (−11.5 + 19.9i)9-s + (22.5 + 38.9i)11-s + (1.73 + 1.00i)12-s − 59i·13-s + (10.5 + 54.5i)14-s + (35.5 − 61.4i)16-s + (−46.7 + 27i)17-s + (59.7 − 34.5i)18-s + (−60.5 + 104. i)19-s + ⋯ |
L(s) = 1 | + (−0.918 − 0.530i)2-s + (0.333 − 0.192i)3-s + (0.0625 + 0.108i)4-s − 0.408·6-s + (−0.654 − 0.755i)7-s + 0.928i·8-s + (−0.425 + 0.737i)9-s + (0.616 + 1.06i)11-s + (0.0416 + 0.0240i)12-s − 1.25i·13-s + (0.200 + 1.04i)14-s + (0.554 − 0.960i)16-s + (−0.667 + 0.385i)17-s + (0.782 − 0.451i)18-s + (−0.730 + 1.26i)19-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(0.669−0.742i)Λ(4−s)
Λ(s)=(=(175s/2ΓC(s+3/2)L(s)(0.669−0.742i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
0.669−0.742i
|
Analytic conductor: |
10.3253 |
Root analytic conductor: |
3.21330 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(149,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :3/2), 0.669−0.742i)
|
Particular Values
L(2) |
≈ |
0.563868+0.250811i |
L(21) |
≈ |
0.563868+0.250811i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 7 | 1+(12.1+14i)T |
good | 2 | 1+(2.59+1.5i)T+(4+6.92i)T2 |
| 3 | 1+(−1.73+i)T+(13.5−23.3i)T2 |
| 11 | 1+(−22.5−38.9i)T+(−665.5+1.15e3i)T2 |
| 13 | 1+59iT−2.19e3T2 |
| 17 | 1+(46.7−27i)T+(2.45e3−4.25e3i)T2 |
| 19 | 1+(60.5−104.i)T+(−3.42e3−5.94e3i)T2 |
| 23 | 1+(−59.7−34.5i)T+(6.08e3+1.05e4i)T2 |
| 29 | 1−162T+2.43e4T2 |
| 31 | 1+(−44−76.2i)T+(−1.48e4+2.57e4i)T2 |
| 37 | 1+(−224.−129.5i)T+(2.53e4+4.38e4i)T2 |
| 41 | 1−195T+6.89e4T2 |
| 43 | 1−286iT−7.95e4T2 |
| 47 | 1+(38.9+22.5i)T+(5.19e4+8.99e4i)T2 |
| 53 | 1+(517.−298.5i)T+(7.44e4−1.28e5i)T2 |
| 59 | 1+(180+311.i)T+(−1.02e5+1.77e5i)T2 |
| 61 | 1+(196−339.i)T+(−1.13e5−1.96e5i)T2 |
| 67 | 1+(242.−140i)T+(1.50e5−2.60e5i)T2 |
| 71 | 1−48T+3.57e5T2 |
| 73 | 1+(578.−334i)T+(1.94e5−3.36e5i)T2 |
| 79 | 1+(−391+677.i)T+(−2.46e5−4.26e5i)T2 |
| 83 | 1+768iT−5.71e5T2 |
| 89 | 1+(597−1.03e3i)T+(−3.52e5−6.10e5i)T2 |
| 97 | 1−902iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.36775377978531296943805471383, −10.97628738449161312161544806072, −10.33057087875985376169367474969, −9.536191286547175278650072720801, −8.372026367714232313728697917052, −7.59963525531400141588979134749, −6.15871435672187466745397182189, −4.58430884525471169418616116709, −2.84725300216554685714252044493, −1.37584895120259891809060741339,
0.39046274048992051658667993163, 2.85057492030130992935031571010, 4.21267453717774901947659681785, 6.26672639852028589878260860366, 6.76872735471695772447324712228, 8.435769808133281364593774830323, 9.089807402808246174352344020339, 9.429621094690656557612325215932, 11.07168381316520743579832822394, 12.03061189006822718553658135072