L(s) = 1 | + (−2.59 − 1.5i)2-s + (1.73 − i)3-s + (0.5 + 0.866i)4-s − 6·6-s + (−12.1 − 14i)7-s + 21i·8-s + (−11.5 + 19.9i)9-s + (22.5 + 38.9i)11-s + (1.73 + 1.00i)12-s − 59i·13-s + (10.5 + 54.5i)14-s + (35.5 − 61.4i)16-s + (−46.7 + 27i)17-s + (59.7 − 34.5i)18-s + (−60.5 + 104. i)19-s + ⋯ |
L(s) = 1 | + (−0.918 − 0.530i)2-s + (0.333 − 0.192i)3-s + (0.0625 + 0.108i)4-s − 0.408·6-s + (−0.654 − 0.755i)7-s + 0.928i·8-s + (−0.425 + 0.737i)9-s + (0.616 + 1.06i)11-s + (0.0416 + 0.0240i)12-s − 1.25i·13-s + (0.200 + 1.04i)14-s + (0.554 − 0.960i)16-s + (−0.667 + 0.385i)17-s + (0.782 − 0.451i)18-s + (−0.730 + 1.26i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.669 - 0.742i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.669 - 0.742i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.563868 + 0.250811i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.563868 + 0.250811i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 7 | \( 1 + (12.1 + 14i)T \) |
good | 2 | \( 1 + (2.59 + 1.5i)T + (4 + 6.92i)T^{2} \) |
| 3 | \( 1 + (-1.73 + i)T + (13.5 - 23.3i)T^{2} \) |
| 11 | \( 1 + (-22.5 - 38.9i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + 59iT - 2.19e3T^{2} \) |
| 17 | \( 1 + (46.7 - 27i)T + (2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (60.5 - 104. i)T + (-3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-59.7 - 34.5i)T + (6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 - 162T + 2.43e4T^{2} \) |
| 31 | \( 1 + (-44 - 76.2i)T + (-1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + (-224. - 129.5i)T + (2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 - 195T + 6.89e4T^{2} \) |
| 43 | \( 1 - 286iT - 7.95e4T^{2} \) |
| 47 | \( 1 + (38.9 + 22.5i)T + (5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (517. - 298.5i)T + (7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (180 + 311. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (196 - 339. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (242. - 140i)T + (1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 - 48T + 3.57e5T^{2} \) |
| 73 | \( 1 + (578. - 334i)T + (1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-391 + 677. i)T + (-2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 + 768iT - 5.71e5T^{2} \) |
| 89 | \( 1 + (597 - 1.03e3i)T + (-3.52e5 - 6.10e5i)T^{2} \) |
| 97 | \( 1 - 902iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.36775377978531296943805471383, −10.97628738449161312161544806072, −10.33057087875985376169367474969, −9.536191286547175278650072720801, −8.372026367714232313728697917052, −7.59963525531400141588979134749, −6.15871435672187466745397182189, −4.58430884525471169418616116709, −2.84725300216554685714252044493, −1.37584895120259891809060741339,
0.39046274048992051658667993163, 2.85057492030130992935031571010, 4.21267453717774901947659681785, 6.26672639852028589878260860366, 6.76872735471695772447324712228, 8.435769808133281364593774830323, 9.089807402808246174352344020339, 9.429621094690656557612325215932, 11.07168381316520743579832822394, 12.03061189006822718553658135072