Properties

Label 2-175-175.47-c1-0-5
Degree 22
Conductor 175175
Sign 0.6610.749i-0.661 - 0.749i
Analytic cond. 1.397381.39738
Root an. cond. 1.182101.18210
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.0825 + 1.57i)2-s + (−0.0997 + 0.0808i)3-s + (−0.483 − 0.0508i)4-s + (−1.93 + 1.11i)5-s + (−0.118 − 0.163i)6-s + (2.63 − 0.202i)7-s + (−0.373 + 2.35i)8-s + (−0.620 + 2.91i)9-s + (−1.59 − 3.14i)10-s + (−3.49 + 0.743i)11-s + (0.0523 − 0.0339i)12-s + (0.403 − 0.791i)13-s + (0.101 + 4.17i)14-s + (0.103 − 0.267i)15-s + (−4.63 − 0.984i)16-s + (6.15 − 2.36i)17-s + ⋯
L(s)  = 1  + (−0.0583 + 1.11i)2-s + (−0.0576 + 0.0466i)3-s + (−0.241 − 0.0254i)4-s + (−0.866 + 0.499i)5-s + (−0.0485 − 0.0668i)6-s + (0.997 − 0.0765i)7-s + (−0.132 + 0.833i)8-s + (−0.206 + 0.972i)9-s + (−0.505 − 0.993i)10-s + (−1.05 + 0.224i)11-s + (0.0151 − 0.00981i)12-s + (0.111 − 0.219i)13-s + (0.0270 + 1.11i)14-s + (0.0266 − 0.0691i)15-s + (−1.15 − 0.246i)16-s + (1.49 − 0.572i)17-s + ⋯

Functional equation

Λ(s)=(175s/2ΓC(s)L(s)=((0.6610.749i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.661 - 0.749i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(175s/2ΓC(s+1/2)L(s)=((0.6610.749i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.661 - 0.749i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 175175    =    5275^{2} \cdot 7
Sign: 0.6610.749i-0.661 - 0.749i
Analytic conductor: 1.397381.39738
Root analytic conductor: 1.182101.18210
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ175(47,)\chi_{175} (47, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 175, ( :1/2), 0.6610.749i)(2,\ 175,\ (\ :1/2),\ -0.661 - 0.749i)

Particular Values

L(1)L(1) \approx 0.438507+0.971756i0.438507 + 0.971756i
L(12)L(\frac12) \approx 0.438507+0.971756i0.438507 + 0.971756i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1+(1.931.11i)T 1 + (1.93 - 1.11i)T
7 1+(2.63+0.202i)T 1 + (-2.63 + 0.202i)T
good2 1+(0.08251.57i)T+(1.980.209i)T2 1 + (0.0825 - 1.57i)T + (-1.98 - 0.209i)T^{2}
3 1+(0.09970.0808i)T+(0.6232.93i)T2 1 + (0.0997 - 0.0808i)T + (0.623 - 2.93i)T^{2}
11 1+(3.490.743i)T+(10.04.47i)T2 1 + (3.49 - 0.743i)T + (10.0 - 4.47i)T^{2}
13 1+(0.403+0.791i)T+(7.6410.5i)T2 1 + (-0.403 + 0.791i)T + (-7.64 - 10.5i)T^{2}
17 1+(6.15+2.36i)T+(12.611.3i)T2 1 + (-6.15 + 2.36i)T + (12.6 - 11.3i)T^{2}
19 1+(0.107+1.02i)T+(18.5+3.95i)T2 1 + (0.107 + 1.02i)T + (-18.5 + 3.95i)T^{2}
23 1+(2.680.140i)T+(22.8+2.40i)T2 1 + (-2.68 - 0.140i)T + (22.8 + 2.40i)T^{2}
29 1+(0.2420.334i)T+(8.9627.5i)T2 1 + (0.242 - 0.334i)T + (-8.96 - 27.5i)T^{2}
31 1+(1.79+4.02i)T+(20.723.0i)T2 1 + (-1.79 + 4.02i)T + (-20.7 - 23.0i)T^{2}
37 1+(5.678.74i)T+(15.0+33.8i)T2 1 + (-5.67 - 8.74i)T + (-15.0 + 33.8i)T^{2}
41 1+(0.8840.287i)T+(33.124.0i)T2 1 + (0.884 - 0.287i)T + (33.1 - 24.0i)T^{2}
43 1+(3.39+3.39i)T43iT2 1 + (-3.39 + 3.39i)T - 43iT^{2}
47 1+(2.43+6.33i)T+(34.931.4i)T2 1 + (-2.43 + 6.33i)T + (-34.9 - 31.4i)T^{2}
53 1+(5.17+6.38i)T+(11.0+51.8i)T2 1 + (5.17 + 6.38i)T + (-11.0 + 51.8i)T^{2}
59 1+(3.83+4.25i)T+(6.1658.6i)T2 1 + (-3.83 + 4.25i)T + (-6.16 - 58.6i)T^{2}
61 1+(3.993.59i)T+(6.3760.6i)T2 1 + (3.99 - 3.59i)T + (6.37 - 60.6i)T^{2}
67 1+(3.9010.1i)T+(49.7+44.8i)T2 1 + (-3.90 - 10.1i)T + (-49.7 + 44.8i)T^{2}
71 1+(5.233.80i)T+(21.9+67.5i)T2 1 + (-5.23 - 3.80i)T + (21.9 + 67.5i)T^{2}
73 1+(9.62+6.25i)T+(29.6+66.6i)T2 1 + (9.62 + 6.25i)T + (29.6 + 66.6i)T^{2}
79 1+(5.43+12.2i)T+(52.8+58.7i)T2 1 + (5.43 + 12.2i)T + (-52.8 + 58.7i)T^{2}
83 1+(10.5+1.67i)T+(78.9+25.6i)T2 1 + (10.5 + 1.67i)T + (78.9 + 25.6i)T^{2}
89 1+(3.493.88i)T+(9.30+88.5i)T2 1 + (-3.49 - 3.88i)T + (-9.30 + 88.5i)T^{2}
97 1+(14.92.36i)T+(92.229.9i)T2 1 + (14.9 - 2.36i)T + (92.2 - 29.9i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−13.37279906005886106468150311906, −11.83707346695819399686556554786, −11.17102621183245438560379269150, −10.24147895161352968322093684481, −8.338532942096355084417170902184, −7.83477511630986241166786312720, −7.17128778178475511638814986527, −5.56501810626016505867541505376, −4.75826800579302726028119731342, −2.70784218509486283743422208273, 1.13434108344645080041028676974, 3.05991778022188021729141635215, 4.25080564090156924566601077570, 5.70782975799851445230582793175, 7.40901232207654782296715275805, 8.362224804597699335190724055186, 9.492482754637843378385169209461, 10.74362333400670285490031529673, 11.34942630966504280122967945212, 12.34224031183747493377354737373

Graph of the ZZ-function along the critical line