Properties

Label 2-175-175.47-c1-0-11
Degree 22
Conductor 175175
Sign 0.6990.714i0.699 - 0.714i
Analytic cond. 1.397381.39738
Root an. cond. 1.182101.18210
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.0729 + 1.39i)2-s + (2.18 − 1.77i)3-s + (0.0566 + 0.00595i)4-s + (−0.287 + 2.21i)5-s + (2.30 + 3.17i)6-s + (−2.62 − 0.311i)7-s + (−0.448 + 2.83i)8-s + (1.02 − 4.82i)9-s + (−3.06 − 0.562i)10-s + (1.26 − 0.268i)11-s + (0.134 − 0.0873i)12-s + (1.23 − 2.42i)13-s + (0.624 − 3.63i)14-s + (3.30 + 5.36i)15-s + (−3.79 − 0.807i)16-s + (1.66 − 0.639i)17-s + ⋯
L(s)  = 1  + (−0.0515 + 0.984i)2-s + (1.26 − 1.02i)3-s + (0.0283 + 0.00297i)4-s + (−0.128 + 0.991i)5-s + (0.942 + 1.29i)6-s + (−0.993 − 0.117i)7-s + (−0.158 + 1.00i)8-s + (0.341 − 1.60i)9-s + (−0.969 − 0.177i)10-s + (0.380 − 0.0808i)11-s + (0.0388 − 0.0252i)12-s + (0.342 − 0.672i)13-s + (0.167 − 0.971i)14-s + (0.852 + 1.38i)15-s + (−0.949 − 0.201i)16-s + (0.403 − 0.155i)17-s + ⋯

Functional equation

Λ(s)=(175s/2ΓC(s)L(s)=((0.6990.714i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.699 - 0.714i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(175s/2ΓC(s+1/2)L(s)=((0.6990.714i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.699 - 0.714i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 175175    =    5275^{2} \cdot 7
Sign: 0.6990.714i0.699 - 0.714i
Analytic conductor: 1.397381.39738
Root analytic conductor: 1.182101.18210
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ175(47,)\chi_{175} (47, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 175, ( :1/2), 0.6990.714i)(2,\ 175,\ (\ :1/2),\ 0.699 - 0.714i)

Particular Values

L(1)L(1) \approx 1.47935+0.621663i1.47935 + 0.621663i
L(12)L(\frac12) \approx 1.47935+0.621663i1.47935 + 0.621663i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1+(0.2872.21i)T 1 + (0.287 - 2.21i)T
7 1+(2.62+0.311i)T 1 + (2.62 + 0.311i)T
good2 1+(0.07291.39i)T+(1.980.209i)T2 1 + (0.0729 - 1.39i)T + (-1.98 - 0.209i)T^{2}
3 1+(2.18+1.77i)T+(0.6232.93i)T2 1 + (-2.18 + 1.77i)T + (0.623 - 2.93i)T^{2}
11 1+(1.26+0.268i)T+(10.04.47i)T2 1 + (-1.26 + 0.268i)T + (10.0 - 4.47i)T^{2}
13 1+(1.23+2.42i)T+(7.6410.5i)T2 1 + (-1.23 + 2.42i)T + (-7.64 - 10.5i)T^{2}
17 1+(1.66+0.639i)T+(12.611.3i)T2 1 + (-1.66 + 0.639i)T + (12.6 - 11.3i)T^{2}
19 1+(0.525+4.99i)T+(18.5+3.95i)T2 1 + (0.525 + 4.99i)T + (-18.5 + 3.95i)T^{2}
23 1+(7.99+0.419i)T+(22.8+2.40i)T2 1 + (7.99 + 0.419i)T + (22.8 + 2.40i)T^{2}
29 1+(0.927+1.27i)T+(8.9627.5i)T2 1 + (-0.927 + 1.27i)T + (-8.96 - 27.5i)T^{2}
31 1+(3.588.05i)T+(20.723.0i)T2 1 + (3.58 - 8.05i)T + (-20.7 - 23.0i)T^{2}
37 1+(1.62+2.50i)T+(15.0+33.8i)T2 1 + (1.62 + 2.50i)T + (-15.0 + 33.8i)T^{2}
41 1+(11.6+3.78i)T+(33.124.0i)T2 1 + (-11.6 + 3.78i)T + (33.1 - 24.0i)T^{2}
43 1+(4.194.19i)T43iT2 1 + (4.19 - 4.19i)T - 43iT^{2}
47 1+(2.185.68i)T+(34.931.4i)T2 1 + (2.18 - 5.68i)T + (-34.9 - 31.4i)T^{2}
53 1+(2.51+3.10i)T+(11.0+51.8i)T2 1 + (2.51 + 3.10i)T + (-11.0 + 51.8i)T^{2}
59 1+(2.983.31i)T+(6.1658.6i)T2 1 + (2.98 - 3.31i)T + (-6.16 - 58.6i)T^{2}
61 1+(6.76+6.08i)T+(6.3760.6i)T2 1 + (-6.76 + 6.08i)T + (6.37 - 60.6i)T^{2}
67 1+(1.574.11i)T+(49.7+44.8i)T2 1 + (-1.57 - 4.11i)T + (-49.7 + 44.8i)T^{2}
71 1+(6.774.91i)T+(21.9+67.5i)T2 1 + (-6.77 - 4.91i)T + (21.9 + 67.5i)T^{2}
73 1+(3.04+1.97i)T+(29.6+66.6i)T2 1 + (3.04 + 1.97i)T + (29.6 + 66.6i)T^{2}
79 1+(1.50+3.38i)T+(52.8+58.7i)T2 1 + (1.50 + 3.38i)T + (-52.8 + 58.7i)T^{2}
83 1+(0.08070.0127i)T+(78.9+25.6i)T2 1 + (-0.0807 - 0.0127i)T + (78.9 + 25.6i)T^{2}
89 1+(10.711.9i)T+(9.30+88.5i)T2 1 + (-10.7 - 11.9i)T + (-9.30 + 88.5i)T^{2}
97 1+(5.33+0.844i)T+(92.229.9i)T2 1 + (-5.33 + 0.844i)T + (92.2 - 29.9i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−13.14388624911349000937303895287, −12.12888035413503956771202331496, −10.81761015851968560428832156913, −9.472515163133284369208131138043, −8.358100944320597604258083286509, −7.50781966016923249028267675469, −6.80429568534588143541461286925, −6.03669360331535512403184403425, −3.44577640357779218293343461334, −2.45476617106814728836594947615, 2.03410171525777927263358635214, 3.59856069422125932089156893034, 4.10988781139594189266387563211, 6.07865377969781415250386143307, 7.87060022859823523963572984856, 8.993647666307694606127455277454, 9.670866678859924264192571862619, 10.22882409664185781641857225674, 11.67136484487784962927691246068, 12.50858218549619572768439201253

Graph of the ZZ-function along the critical line