L(s) = 1 | + (−0.423 + 0.651i)2-s + (0.402 − 1.04i)3-s + (0.567 + 1.27i)4-s + (0.567 − 2.16i)5-s + (0.513 + 0.706i)6-s + (1.24 − 2.33i)7-s + (−2.60 − 0.412i)8-s + (1.29 + 1.16i)9-s + (1.16 + 1.28i)10-s + (−0.888 − 0.986i)11-s + (1.56 − 0.0820i)12-s + (1.79 + 0.912i)13-s + (0.995 + 1.79i)14-s + (−2.03 − 1.46i)15-s + (−0.495 + 0.550i)16-s + (−0.585 + 0.722i)17-s + ⋯ |
L(s) = 1 | + (−0.299 + 0.460i)2-s + (0.232 − 0.605i)3-s + (0.283 + 0.637i)4-s + (0.253 − 0.967i)5-s + (0.209 + 0.288i)6-s + (0.470 − 0.882i)7-s + (−0.921 − 0.145i)8-s + (0.430 + 0.387i)9-s + (0.369 + 0.406i)10-s + (−0.267 − 0.297i)11-s + (0.451 − 0.0236i)12-s + (0.496 + 0.253i)13-s + (0.266 + 0.480i)14-s + (−0.526 − 0.378i)15-s + (−0.123 + 0.137i)16-s + (−0.141 + 0.175i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.994 + 0.100i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.994 + 0.100i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.21513 - 0.0614907i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.21513 - 0.0614907i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-0.567 + 2.16i)T \) |
| 7 | \( 1 + (-1.24 + 2.33i)T \) |
good | 2 | \( 1 + (0.423 - 0.651i)T + (-0.813 - 1.82i)T^{2} \) |
| 3 | \( 1 + (-0.402 + 1.04i)T + (-2.22 - 2.00i)T^{2} \) |
| 11 | \( 1 + (0.888 + 0.986i)T + (-1.14 + 10.9i)T^{2} \) |
| 13 | \( 1 + (-1.79 - 0.912i)T + (7.64 + 10.5i)T^{2} \) |
| 17 | \( 1 + (0.585 - 0.722i)T + (-3.53 - 16.6i)T^{2} \) |
| 19 | \( 1 + (-4.81 - 2.14i)T + (12.7 + 14.1i)T^{2} \) |
| 23 | \( 1 + (0.960 + 0.623i)T + (9.35 + 21.0i)T^{2} \) |
| 29 | \( 1 + (4.04 - 5.56i)T + (-8.96 - 27.5i)T^{2} \) |
| 31 | \( 1 + (9.74 - 1.02i)T + (30.3 - 6.44i)T^{2} \) |
| 37 | \( 1 + (-0.401 - 7.65i)T + (-36.7 + 3.86i)T^{2} \) |
| 41 | \( 1 + (-0.0622 + 0.0202i)T + (33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + (3.34 + 3.34i)T + 43iT^{2} \) |
| 47 | \( 1 + (0.145 - 0.117i)T + (9.77 - 45.9i)T^{2} \) |
| 53 | \( 1 + (10.4 + 4.00i)T + (39.3 + 35.4i)T^{2} \) |
| 59 | \( 1 + (4.71 + 1.00i)T + (53.8 + 23.9i)T^{2} \) |
| 61 | \( 1 + (-0.951 - 4.47i)T + (-55.7 + 24.8i)T^{2} \) |
| 67 | \( 1 + (-6.60 - 5.34i)T + (13.9 + 65.5i)T^{2} \) |
| 71 | \( 1 + (-8.72 - 6.33i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-1.64 - 0.0861i)T + (72.6 + 7.63i)T^{2} \) |
| 79 | \( 1 + (-10.3 - 1.09i)T + (77.2 + 16.4i)T^{2} \) |
| 83 | \( 1 + (-0.978 + 6.17i)T + (-78.9 - 25.6i)T^{2} \) |
| 89 | \( 1 + (-15.3 + 3.26i)T + (81.3 - 36.1i)T^{2} \) |
| 97 | \( 1 + (-2.72 - 17.1i)T + (-92.2 + 29.9i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.89590383793083870995095371167, −11.88870523275337039388612956246, −10.76301099840245335840155887502, −9.389998247981883586403015269253, −8.284126993511750145193647263077, −7.69921064273530942891769106816, −6.72142635009885580331616616423, −5.21161586589850371946068123844, −3.69774702702757647685315101983, −1.60632515910715394738086843577,
2.06983385587951446651387685000, 3.39226014384930405785506177108, 5.24438547934150726866184236817, 6.27318895305764801859243389984, 7.59198689923332142847934799762, 9.281203349324206897637248978578, 9.614669755955948902482235806391, 10.83143348408193384050798222160, 11.32386686793847216508293385055, 12.50661385254470068829606793893