Properties

Label 2-175-175.3-c1-0-11
Degree 22
Conductor 175175
Sign 0.994+0.100i0.994 + 0.100i
Analytic cond. 1.397381.39738
Root an. cond. 1.182101.18210
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.423 + 0.651i)2-s + (0.402 − 1.04i)3-s + (0.567 + 1.27i)4-s + (0.567 − 2.16i)5-s + (0.513 + 0.706i)6-s + (1.24 − 2.33i)7-s + (−2.60 − 0.412i)8-s + (1.29 + 1.16i)9-s + (1.16 + 1.28i)10-s + (−0.888 − 0.986i)11-s + (1.56 − 0.0820i)12-s + (1.79 + 0.912i)13-s + (0.995 + 1.79i)14-s + (−2.03 − 1.46i)15-s + (−0.495 + 0.550i)16-s + (−0.585 + 0.722i)17-s + ⋯
L(s)  = 1  + (−0.299 + 0.460i)2-s + (0.232 − 0.605i)3-s + (0.283 + 0.637i)4-s + (0.253 − 0.967i)5-s + (0.209 + 0.288i)6-s + (0.470 − 0.882i)7-s + (−0.921 − 0.145i)8-s + (0.430 + 0.387i)9-s + (0.369 + 0.406i)10-s + (−0.267 − 0.297i)11-s + (0.451 − 0.0236i)12-s + (0.496 + 0.253i)13-s + (0.266 + 0.480i)14-s + (−0.526 − 0.378i)15-s + (−0.123 + 0.137i)16-s + (−0.141 + 0.175i)17-s + ⋯

Functional equation

Λ(s)=(175s/2ΓC(s)L(s)=((0.994+0.100i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.994 + 0.100i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(175s/2ΓC(s+1/2)L(s)=((0.994+0.100i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.994 + 0.100i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 175175    =    5275^{2} \cdot 7
Sign: 0.994+0.100i0.994 + 0.100i
Analytic conductor: 1.397381.39738
Root analytic conductor: 1.182101.18210
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ175(3,)\chi_{175} (3, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 175, ( :1/2), 0.994+0.100i)(2,\ 175,\ (\ :1/2),\ 0.994 + 0.100i)

Particular Values

L(1)L(1) \approx 1.215130.0614907i1.21513 - 0.0614907i
L(12)L(\frac12) \approx 1.215130.0614907i1.21513 - 0.0614907i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1+(0.567+2.16i)T 1 + (-0.567 + 2.16i)T
7 1+(1.24+2.33i)T 1 + (-1.24 + 2.33i)T
good2 1+(0.4230.651i)T+(0.8131.82i)T2 1 + (0.423 - 0.651i)T + (-0.813 - 1.82i)T^{2}
3 1+(0.402+1.04i)T+(2.222.00i)T2 1 + (-0.402 + 1.04i)T + (-2.22 - 2.00i)T^{2}
11 1+(0.888+0.986i)T+(1.14+10.9i)T2 1 + (0.888 + 0.986i)T + (-1.14 + 10.9i)T^{2}
13 1+(1.790.912i)T+(7.64+10.5i)T2 1 + (-1.79 - 0.912i)T + (7.64 + 10.5i)T^{2}
17 1+(0.5850.722i)T+(3.5316.6i)T2 1 + (0.585 - 0.722i)T + (-3.53 - 16.6i)T^{2}
19 1+(4.812.14i)T+(12.7+14.1i)T2 1 + (-4.81 - 2.14i)T + (12.7 + 14.1i)T^{2}
23 1+(0.960+0.623i)T+(9.35+21.0i)T2 1 + (0.960 + 0.623i)T + (9.35 + 21.0i)T^{2}
29 1+(4.045.56i)T+(8.9627.5i)T2 1 + (4.04 - 5.56i)T + (-8.96 - 27.5i)T^{2}
31 1+(9.741.02i)T+(30.36.44i)T2 1 + (9.74 - 1.02i)T + (30.3 - 6.44i)T^{2}
37 1+(0.4017.65i)T+(36.7+3.86i)T2 1 + (-0.401 - 7.65i)T + (-36.7 + 3.86i)T^{2}
41 1+(0.0622+0.0202i)T+(33.124.0i)T2 1 + (-0.0622 + 0.0202i)T + (33.1 - 24.0i)T^{2}
43 1+(3.34+3.34i)T+43iT2 1 + (3.34 + 3.34i)T + 43iT^{2}
47 1+(0.1450.117i)T+(9.7745.9i)T2 1 + (0.145 - 0.117i)T + (9.77 - 45.9i)T^{2}
53 1+(10.4+4.00i)T+(39.3+35.4i)T2 1 + (10.4 + 4.00i)T + (39.3 + 35.4i)T^{2}
59 1+(4.71+1.00i)T+(53.8+23.9i)T2 1 + (4.71 + 1.00i)T + (53.8 + 23.9i)T^{2}
61 1+(0.9514.47i)T+(55.7+24.8i)T2 1 + (-0.951 - 4.47i)T + (-55.7 + 24.8i)T^{2}
67 1+(6.605.34i)T+(13.9+65.5i)T2 1 + (-6.60 - 5.34i)T + (13.9 + 65.5i)T^{2}
71 1+(8.726.33i)T+(21.9+67.5i)T2 1 + (-8.72 - 6.33i)T + (21.9 + 67.5i)T^{2}
73 1+(1.640.0861i)T+(72.6+7.63i)T2 1 + (-1.64 - 0.0861i)T + (72.6 + 7.63i)T^{2}
79 1+(10.31.09i)T+(77.2+16.4i)T2 1 + (-10.3 - 1.09i)T + (77.2 + 16.4i)T^{2}
83 1+(0.978+6.17i)T+(78.925.6i)T2 1 + (-0.978 + 6.17i)T + (-78.9 - 25.6i)T^{2}
89 1+(15.3+3.26i)T+(81.336.1i)T2 1 + (-15.3 + 3.26i)T + (81.3 - 36.1i)T^{2}
97 1+(2.7217.1i)T+(92.2+29.9i)T2 1 + (-2.72 - 17.1i)T + (-92.2 + 29.9i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−12.89590383793083870995095371167, −11.88870523275337039388612956246, −10.76301099840245335840155887502, −9.389998247981883586403015269253, −8.284126993511750145193647263077, −7.69921064273530942891769106816, −6.72142635009885580331616616423, −5.21161586589850371946068123844, −3.69774702702757647685315101983, −1.60632515910715394738086843577, 2.06983385587951446651387685000, 3.39226014384930405785506177108, 5.24438547934150726866184236817, 6.27318895305764801859243389984, 7.59198689923332142847934799762, 9.281203349324206897637248978578, 9.614669755955948902482235806391, 10.83143348408193384050798222160, 11.32386686793847216508293385055, 12.50661385254470068829606793893

Graph of the ZZ-function along the critical line