L(s) = 1 | + (0.776 − 0.0406i)2-s + (−0.706 + 0.872i)3-s + (−1.38 + 0.145i)4-s + (2.15 + 0.589i)5-s + (−0.513 + 0.706i)6-s + (2.33 + 1.24i)7-s + (−2.60 + 0.412i)8-s + (0.361 + 1.70i)9-s + (1.69 + 0.370i)10-s + (1.29 + 0.276i)11-s + (0.853 − 1.31i)12-s + (−1.79 + 0.912i)13-s + (1.86 + 0.870i)14-s + (−2.03 + 1.46i)15-s + (0.724 − 0.153i)16-s + (0.333 − 0.868i)17-s + ⋯ |
L(s) = 1 | + (0.548 − 0.0287i)2-s + (−0.408 + 0.503i)3-s + (−0.694 + 0.0729i)4-s + (0.964 + 0.263i)5-s + (−0.209 + 0.288i)6-s + (0.882 + 0.470i)7-s + (−0.921 + 0.145i)8-s + (0.120 + 0.566i)9-s + (0.536 + 0.117i)10-s + (0.391 + 0.0832i)11-s + (0.246 − 0.379i)12-s + (−0.496 + 0.253i)13-s + (0.497 + 0.232i)14-s + (−0.526 + 0.378i)15-s + (0.181 − 0.0384i)16-s + (0.0808 − 0.210i)17-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(0.584−0.811i)Λ(2−s)
Λ(s)=(=(175s/2ΓC(s+1/2)L(s)(0.584−0.811i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
0.584−0.811i
|
Analytic conductor: |
1.39738 |
Root analytic conductor: |
1.18210 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(17,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :1/2), 0.584−0.811i)
|
Particular Values
L(1) |
≈ |
1.19656+0.612623i |
L(21) |
≈ |
1.19656+0.612623i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−2.15−0.589i)T |
| 7 | 1+(−2.33−1.24i)T |
good | 2 | 1+(−0.776+0.0406i)T+(1.98−0.209i)T2 |
| 3 | 1+(0.706−0.872i)T+(−0.623−2.93i)T2 |
| 11 | 1+(−1.29−0.276i)T+(10.0+4.47i)T2 |
| 13 | 1+(1.79−0.912i)T+(7.64−10.5i)T2 |
| 17 | 1+(−0.333+0.868i)T+(−12.6−11.3i)T2 |
| 19 | 1+(−0.550+5.24i)T+(−18.5−3.95i)T2 |
| 23 | 1+(0.0599+1.14i)T+(−22.8+2.40i)T2 |
| 29 | 1+(4.04+5.56i)T+(−8.96+27.5i)T2 |
| 31 | 1+(3.98+8.95i)T+(−20.7+23.0i)T2 |
| 37 | 1+(−6.42−4.17i)T+(15.0+33.8i)T2 |
| 41 | 1+(0.0622+0.0202i)T+(33.1+24.0i)T2 |
| 43 | 1+(3.34−3.34i)T−43iT2 |
| 47 | 1+(0.174−0.0668i)T+(34.9−31.4i)T2 |
| 53 | 1+(−8.68−7.02i)T+(11.0+51.8i)T2 |
| 59 | 1+(3.22+3.58i)T+(−6.16+58.6i)T2 |
| 61 | 1+(3.39+3.06i)T+(6.37+60.6i)T2 |
| 67 | 1+(7.93+3.04i)T+(49.7+44.8i)T2 |
| 71 | 1+(−8.72+6.33i)T+(21.9−67.5i)T2 |
| 73 | 1+(−0.896−1.38i)T+(−29.6+66.6i)T2 |
| 79 | 1+(4.24−9.53i)T+(−52.8−58.7i)T2 |
| 83 | 1+(0.978+6.17i)T+(−78.9+25.6i)T2 |
| 89 | 1+(−10.5+11.6i)T+(−9.30−88.5i)T2 |
| 97 | 1+(2.72−17.1i)T+(−92.2−29.9i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.13535052281042856613941264830, −11.80636030565306054729198371560, −11.03490433071029955162187331960, −9.742641477478632480294266508654, −9.141274687307035200843225384365, −7.73777245847085111026012866771, −6.06909541362419225635690980822, −5.14593767640431741675987249336, −4.38026632458168829001970546952, −2.39876313751571396058093917783,
1.39581107314121545323264695282, 3.74816270273198031965414829110, 5.13309211378218191923573553454, 5.88886730756046023360283201285, 7.15851068197433543653260358034, 8.587319989341199460029688651157, 9.546783522798656373345761275108, 10.57492757490662908961872340463, 11.97435371221793579220665047369, 12.64335573193334021234865419090