L(s) = 1 | + (1.58 − 0.0830i)2-s + (1.23 − 1.52i)3-s + (0.513 − 0.0539i)4-s + (−0.221 + 2.22i)5-s + (1.82 − 2.51i)6-s + (1.63 − 2.08i)7-s + (−2.32 + 0.368i)8-s + (−0.174 − 0.822i)9-s + (−0.166 + 3.54i)10-s + (−2.03 − 0.433i)11-s + (0.550 − 0.848i)12-s + (−1.94 + 0.992i)13-s + (2.40 − 3.43i)14-s + (3.11 + 3.08i)15-s + (−4.66 + 0.990i)16-s + (1.81 − 4.72i)17-s + ⋯ |
L(s) = 1 | + (1.12 − 0.0587i)2-s + (0.712 − 0.879i)3-s + (0.256 − 0.0269i)4-s + (−0.0992 + 0.995i)5-s + (0.746 − 1.02i)6-s + (0.616 − 0.787i)7-s + (−0.821 + 0.130i)8-s + (−0.0583 − 0.274i)9-s + (−0.0527 + 1.12i)10-s + (−0.614 − 0.130i)11-s + (0.159 − 0.244i)12-s + (−0.540 + 0.275i)13-s + (0.644 − 0.918i)14-s + (0.804 + 0.795i)15-s + (−1.16 + 0.247i)16-s + (0.440 − 1.14i)17-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(0.894+0.447i)Λ(2−s)
Λ(s)=(=(175s/2ΓC(s+1/2)L(s)(0.894+0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
0.894+0.447i
|
Analytic conductor: |
1.39738 |
Root analytic conductor: |
1.18210 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(17,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :1/2), 0.894+0.447i)
|
Particular Values
L(1) |
≈ |
2.06754−0.488191i |
L(21) |
≈ |
2.06754−0.488191i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(0.221−2.22i)T |
| 7 | 1+(−1.63+2.08i)T |
good | 2 | 1+(−1.58+0.0830i)T+(1.98−0.209i)T2 |
| 3 | 1+(−1.23+1.52i)T+(−0.623−2.93i)T2 |
| 11 | 1+(2.03+0.433i)T+(10.0+4.47i)T2 |
| 13 | 1+(1.94−0.992i)T+(7.64−10.5i)T2 |
| 17 | 1+(−1.81+4.72i)T+(−12.6−11.3i)T2 |
| 19 | 1+(0.785−7.47i)T+(−18.5−3.95i)T2 |
| 23 | 1+(0.105+2.00i)T+(−22.8+2.40i)T2 |
| 29 | 1+(4.12+5.67i)T+(−8.96+27.5i)T2 |
| 31 | 1+(−2.58−5.80i)T+(−20.7+23.0i)T2 |
| 37 | 1+(−2.22−1.44i)T+(15.0+33.8i)T2 |
| 41 | 1+(−8.47−2.75i)T+(33.1+24.0i)T2 |
| 43 | 1+(−0.986+0.986i)T−43iT2 |
| 47 | 1+(−2.45+0.941i)T+(34.9−31.4i)T2 |
| 53 | 1+(7.17+5.81i)T+(11.0+51.8i)T2 |
| 59 | 1+(7.04+7.81i)T+(−6.16+58.6i)T2 |
| 61 | 1+(6.37+5.73i)T+(6.37+60.6i)T2 |
| 67 | 1+(−3.06−1.17i)T+(49.7+44.8i)T2 |
| 71 | 1+(−5.41+3.93i)T+(21.9−67.5i)T2 |
| 73 | 1+(−4.51−6.94i)T+(−29.6+66.6i)T2 |
| 79 | 1+(−1.08+2.44i)T+(−52.8−58.7i)T2 |
| 83 | 1+(−0.456−2.88i)T+(−78.9+25.6i)T2 |
| 89 | 1+(−8.47+9.41i)T+(−9.30−88.5i)T2 |
| 97 | 1+(−0.527+3.33i)T+(−92.2−29.9i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.86483056118908527971198969749, −11.97782838696010143817251054667, −10.92417511132307293051062785670, −9.755519923195095329525257287568, −8.067797978637905491254319895333, −7.48469996552712524439236298651, −6.30366328508568003738979295598, −4.86100317551990405703741496984, −3.50560017481963541971941452183, −2.33512728686979501436632776764,
2.72049562003849283943005451411, 4.15362055146896126551383314604, 4.91877576455446823708507517277, 5.81985878242921899602193701882, 7.85239884505822452409782861243, 8.970222670478036467386435088947, 9.422911065173177088549765793229, 10.95988286654268609421846912043, 12.24048440223828099289135521290, 12.80322372699200652004422120814