L(s) = 1 | + (2.50 − 0.131i)2-s + (−0.971 + 1.20i)3-s + (4.26 − 0.448i)4-s + (−1.53 − 1.62i)5-s + (−2.27 + 3.13i)6-s + (2.61 + 0.377i)7-s + (5.68 − 0.899i)8-s + (0.127 + 0.601i)9-s + (−4.05 − 3.87i)10-s + (−5.16 − 1.09i)11-s + (−3.61 + 5.56i)12-s + (−2.31 + 1.17i)13-s + (6.60 + 0.602i)14-s + (3.44 − 0.255i)15-s + (5.71 − 1.21i)16-s + (0.412 − 1.07i)17-s + ⋯ |
L(s) = 1 | + (1.77 − 0.0928i)2-s + (−0.561 + 0.692i)3-s + (2.13 − 0.224i)4-s + (−0.685 − 0.728i)5-s + (−0.929 + 1.27i)6-s + (0.989 + 0.142i)7-s + (2.00 − 0.318i)8-s + (0.0426 + 0.200i)9-s + (−1.28 − 1.22i)10-s + (−1.55 − 0.331i)11-s + (−1.04 + 1.60i)12-s + (−0.641 + 0.326i)13-s + (1.76 + 0.161i)14-s + (0.889 − 0.0660i)15-s + (1.42 − 0.303i)16-s + (0.100 − 0.260i)17-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(0.981−0.193i)Λ(2−s)
Λ(s)=(=(175s/2ΓC(s+1/2)L(s)(0.981−0.193i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
0.981−0.193i
|
Analytic conductor: |
1.39738 |
Root analytic conductor: |
1.18210 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(17,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :1/2), 0.981−0.193i)
|
Particular Values
L(1) |
≈ |
2.30967+0.225414i |
L(21) |
≈ |
2.30967+0.225414i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(1.53+1.62i)T |
| 7 | 1+(−2.61−0.377i)T |
good | 2 | 1+(−2.50+0.131i)T+(1.98−0.209i)T2 |
| 3 | 1+(0.971−1.20i)T+(−0.623−2.93i)T2 |
| 11 | 1+(5.16+1.09i)T+(10.0+4.47i)T2 |
| 13 | 1+(2.31−1.17i)T+(7.64−10.5i)T2 |
| 17 | 1+(−0.412+1.07i)T+(−12.6−11.3i)T2 |
| 19 | 1+(−0.136+1.29i)T+(−18.5−3.95i)T2 |
| 23 | 1+(0.453+8.64i)T+(−22.8+2.40i)T2 |
| 29 | 1+(−1.59−2.18i)T+(−8.96+27.5i)T2 |
| 31 | 1+(−2.42−5.44i)T+(−20.7+23.0i)T2 |
| 37 | 1+(−2.70−1.75i)T+(15.0+33.8i)T2 |
| 41 | 1+(−6.10−1.98i)T+(33.1+24.0i)T2 |
| 43 | 1+(3.37−3.37i)T−43iT2 |
| 47 | 1+(−6.65+2.55i)T+(34.9−31.4i)T2 |
| 53 | 1+(−2.65−2.14i)T+(11.0+51.8i)T2 |
| 59 | 1+(−1.17−1.30i)T+(−6.16+58.6i)T2 |
| 61 | 1+(−3.10−2.79i)T+(6.37+60.6i)T2 |
| 67 | 1+(−0.225−0.0865i)T+(49.7+44.8i)T2 |
| 71 | 1+(8.50−6.18i)T+(21.9−67.5i)T2 |
| 73 | 1+(6.73+10.3i)T+(−29.6+66.6i)T2 |
| 79 | 1+(−1.88+4.22i)T+(−52.8−58.7i)T2 |
| 83 | 1+(−1.46−9.26i)T+(−78.9+25.6i)T2 |
| 89 | 1+(3.01−3.34i)T+(−9.30−88.5i)T2 |
| 97 | 1+(−1.20+7.60i)T+(−92.2−29.9i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.68745073770488393843832508508, −11.93110545403336653686137749448, −11.08790335557612405714544427875, −10.40267274277463509447426060508, −8.436794413183827709883507595040, −7.34674739939828097504420818577, −5.65031349842384530072616844800, −4.79371808459749967302307987027, −4.49179630497031470603577863684, −2.63058344461571979132601863210,
2.41844300372131987112431682124, 3.88954559586875999386812792938, 5.14859146256801398995891472909, 6.02544092669229570872315258980, 7.48091960273327422528191302205, 7.61524687903706087305385458405, 10.29579687191245507324500651926, 11.33652308223909610889671618798, 11.84766348436997026926459963158, 12.72725636211556561142733255813