L(s) = 1 | + (0.857 − 0.0449i)2-s + (−1.95 + 2.41i)3-s + (−1.25 + 0.131i)4-s + (−0.521 − 2.17i)5-s + (−1.56 + 2.15i)6-s + (−2.09 + 1.61i)7-s + (−2.76 + 0.438i)8-s + (−1.38 − 6.50i)9-s + (−0.544 − 1.84i)10-s + (2.41 + 0.513i)11-s + (2.13 − 3.29i)12-s + (−3.07 + 1.56i)13-s + (−1.72 + 1.47i)14-s + (6.26 + 2.99i)15-s + (0.117 − 0.0249i)16-s + (−1.30 + 3.40i)17-s + ⋯ |
L(s) = 1 | + (0.606 − 0.0317i)2-s + (−1.12 + 1.39i)3-s + (−0.627 + 0.0659i)4-s + (−0.233 − 0.972i)5-s + (−0.640 + 0.880i)6-s + (−0.793 + 0.608i)7-s + (−0.978 + 0.154i)8-s + (−0.460 − 2.16i)9-s + (−0.172 − 0.582i)10-s + (0.728 + 0.154i)11-s + (0.616 − 0.949i)12-s + (−0.854 + 0.435i)13-s + (−0.461 + 0.394i)14-s + (1.61 + 0.772i)15-s + (0.0293 − 0.00624i)16-s + (−0.316 + 0.825i)17-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(−0.998−0.0463i)Λ(2−s)
Λ(s)=(=(175s/2ΓC(s+1/2)L(s)(−0.998−0.0463i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
−0.998−0.0463i
|
Analytic conductor: |
1.39738 |
Root analytic conductor: |
1.18210 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(17,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :1/2), −0.998−0.0463i)
|
Particular Values
L(1) |
≈ |
0.00835839+0.360694i |
L(21) |
≈ |
0.00835839+0.360694i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(0.521+2.17i)T |
| 7 | 1+(2.09−1.61i)T |
good | 2 | 1+(−0.857+0.0449i)T+(1.98−0.209i)T2 |
| 3 | 1+(1.95−2.41i)T+(−0.623−2.93i)T2 |
| 11 | 1+(−2.41−0.513i)T+(10.0+4.47i)T2 |
| 13 | 1+(3.07−1.56i)T+(7.64−10.5i)T2 |
| 17 | 1+(1.30−3.40i)T+(−12.6−11.3i)T2 |
| 19 | 1+(0.742−7.06i)T+(−18.5−3.95i)T2 |
| 23 | 1+(0.107+2.04i)T+(−22.8+2.40i)T2 |
| 29 | 1+(−0.594−0.817i)T+(−8.96+27.5i)T2 |
| 31 | 1+(1.48+3.32i)T+(−20.7+23.0i)T2 |
| 37 | 1+(−0.757−0.492i)T+(15.0+33.8i)T2 |
| 41 | 1+(−2.23−0.727i)T+(33.1+24.0i)T2 |
| 43 | 1+(−1.54+1.54i)T−43iT2 |
| 47 | 1+(2.51−0.965i)T+(34.9−31.4i)T2 |
| 53 | 1+(0.683+0.553i)T+(11.0+51.8i)T2 |
| 59 | 1+(0.825+0.917i)T+(−6.16+58.6i)T2 |
| 61 | 1+(8.07+7.26i)T+(6.37+60.6i)T2 |
| 67 | 1+(−4.72−1.81i)T+(49.7+44.8i)T2 |
| 71 | 1+(11.9−8.65i)T+(21.9−67.5i)T2 |
| 73 | 1+(−4.49−6.92i)T+(−29.6+66.6i)T2 |
| 79 | 1+(6.17−13.8i)T+(−52.8−58.7i)T2 |
| 83 | 1+(−0.481−3.03i)T+(−78.9+25.6i)T2 |
| 89 | 1+(6.29−6.98i)T+(−9.30−88.5i)T2 |
| 97 | 1+(−2.78+17.5i)T+(−92.2−29.9i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.69172073578447049971300574925, −12.34874419398906326272886106015, −11.50793088314850862475931836297, −9.989060284236183874299541821012, −9.453094190283840455062574287507, −8.552885834456207763389615512429, −6.22746944501391492080689792432, −5.48912945944509543858765066423, −4.42364687106305354331073520052, −3.77899683311456966752959653427,
0.31025243709242205541084798253, 2.95102831098113879437635654741, 4.68346987071204700833172560918, 5.99968479950292101772761593265, 6.82330341598654033614592597071, 7.48493923686433028456727083717, 9.277927629555489449585438403458, 10.57048011215093599582952427779, 11.56447813369358873983280054848, 12.30176629823803375612245131208