Properties

Label 2-175-175.103-c3-0-25
Degree $2$
Conductor $175$
Sign $-0.183 - 0.982i$
Analytic cond. $10.3253$
Root an. cond. $3.21330$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.230 + 0.0120i)2-s + (6.35 + 7.84i)3-s + (−7.90 − 0.830i)4-s + (9.14 − 6.42i)5-s + (1.36 + 1.88i)6-s + (14.8 + 11.0i)7-s + (−3.63 − 0.575i)8-s + (−15.5 + 73.3i)9-s + (2.18 − 1.36i)10-s + (−30.1 + 6.40i)11-s + (−43.7 − 67.3i)12-s + (39.6 + 20.2i)13-s + (3.28 + 2.73i)14-s + (108. + 30.9i)15-s + (61.3 + 13.0i)16-s + (−23.6 − 61.4i)17-s + ⋯
L(s)  = 1  + (0.0813 + 0.00426i)2-s + (1.22 + 1.51i)3-s + (−0.987 − 0.103i)4-s + (0.818 − 0.575i)5-s + (0.0930 + 0.128i)6-s + (0.801 + 0.598i)7-s + (−0.160 − 0.0254i)8-s + (−0.577 + 2.71i)9-s + (0.0690 − 0.0433i)10-s + (−0.825 + 0.175i)11-s + (−1.05 − 1.61i)12-s + (0.845 + 0.431i)13-s + (0.0626 + 0.0521i)14-s + (1.86 + 0.532i)15-s + (0.958 + 0.203i)16-s + (−0.336 − 0.877i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.183 - 0.982i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.183 - 0.982i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $-0.183 - 0.982i$
Analytic conductor: \(10.3253\)
Root analytic conductor: \(3.21330\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{175} (103, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :3/2),\ -0.183 - 0.982i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.56709 + 1.88755i\)
\(L(\frac12)\) \(\approx\) \(1.56709 + 1.88755i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (-9.14 + 6.42i)T \)
7 \( 1 + (-14.8 - 11.0i)T \)
good2 \( 1 + (-0.230 - 0.0120i)T + (7.95 + 0.836i)T^{2} \)
3 \( 1 + (-6.35 - 7.84i)T + (-5.61 + 26.4i)T^{2} \)
11 \( 1 + (30.1 - 6.40i)T + (1.21e3 - 541. i)T^{2} \)
13 \( 1 + (-39.6 - 20.2i)T + (1.29e3 + 1.77e3i)T^{2} \)
17 \( 1 + (23.6 + 61.4i)T + (-3.65e3 + 3.28e3i)T^{2} \)
19 \( 1 + (-0.806 - 7.67i)T + (-6.70e3 + 1.42e3i)T^{2} \)
23 \( 1 + (4.70 - 89.8i)T + (-1.21e4 - 1.27e3i)T^{2} \)
29 \( 1 + (80.6 - 110. i)T + (-7.53e3 - 2.31e4i)T^{2} \)
31 \( 1 + (-28.6 + 64.3i)T + (-1.99e4 - 2.21e4i)T^{2} \)
37 \( 1 + (-9.88 + 6.42i)T + (2.06e4 - 4.62e4i)T^{2} \)
41 \( 1 + (-60.6 + 19.6i)T + (5.57e4 - 4.05e4i)T^{2} \)
43 \( 1 + (179. + 179. i)T + 7.95e4iT^{2} \)
47 \( 1 + (61.7 + 23.6i)T + (7.71e4 + 6.94e4i)T^{2} \)
53 \( 1 + (-494. + 400. i)T + (3.09e4 - 1.45e5i)T^{2} \)
59 \( 1 + (-32.2 + 35.8i)T + (-2.14e4 - 2.04e5i)T^{2} \)
61 \( 1 + (-539. + 485. i)T + (2.37e4 - 2.25e5i)T^{2} \)
67 \( 1 + (-870. + 334. i)T + (2.23e5 - 2.01e5i)T^{2} \)
71 \( 1 + (-663. - 481. i)T + (1.10e5 + 3.40e5i)T^{2} \)
73 \( 1 + (-573. + 882. i)T + (-1.58e5 - 3.55e5i)T^{2} \)
79 \( 1 + (-60.3 - 135. i)T + (-3.29e5 + 3.66e5i)T^{2} \)
83 \( 1 + (-74.9 + 473. i)T + (-5.43e5 - 1.76e5i)T^{2} \)
89 \( 1 + (712. + 791. i)T + (-7.36e4 + 7.01e5i)T^{2} \)
97 \( 1 + (40.3 + 254. i)T + (-8.68e5 + 2.82e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.00474300185756091876008448575, −11.24679335044902342613729932270, −10.12180191430162074077723839738, −9.375861895655212551460249562984, −8.754049725336695059477943471054, −8.048527640192367537859413955712, −5.34771706550116451563354158001, −4.95716168550239782445649668723, −3.72503430188512512783422327999, −2.15635115284315395791236502234, 1.06368100613493993662943829206, 2.46684127015152994724996782479, 3.80431498962464488614268317916, 5.71854915594240041138618825599, 6.90576932518495189248406243550, 8.122708402443772609680378808972, 8.472941007584600804862781709604, 9.764242945550491825945769084294, 10.94876361095732128275929655220, 12.52243540707160588388467882004

Graph of the $Z$-function along the critical line