L(s) = 1 | + (0.230 + 0.0120i)2-s + (6.35 + 7.84i)3-s + (−7.90 − 0.830i)4-s + (9.14 − 6.42i)5-s + (1.36 + 1.88i)6-s + (14.8 + 11.0i)7-s + (−3.63 − 0.575i)8-s + (−15.5 + 73.3i)9-s + (2.18 − 1.36i)10-s + (−30.1 + 6.40i)11-s + (−43.7 − 67.3i)12-s + (39.6 + 20.2i)13-s + (3.28 + 2.73i)14-s + (108. + 30.9i)15-s + (61.3 + 13.0i)16-s + (−23.6 − 61.4i)17-s + ⋯ |
L(s) = 1 | + (0.0813 + 0.00426i)2-s + (1.22 + 1.51i)3-s + (−0.987 − 0.103i)4-s + (0.818 − 0.575i)5-s + (0.0930 + 0.128i)6-s + (0.801 + 0.598i)7-s + (−0.160 − 0.0254i)8-s + (−0.577 + 2.71i)9-s + (0.0690 − 0.0433i)10-s + (−0.825 + 0.175i)11-s + (−1.05 − 1.61i)12-s + (0.845 + 0.431i)13-s + (0.0626 + 0.0521i)14-s + (1.86 + 0.532i)15-s + (0.958 + 0.203i)16-s + (−0.336 − 0.877i)17-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(−0.183−0.982i)Λ(4−s)
Λ(s)=(=(175s/2ΓC(s+3/2)L(s)(−0.183−0.982i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
−0.183−0.982i
|
Analytic conductor: |
10.3253 |
Root analytic conductor: |
3.21330 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :3/2), −0.183−0.982i)
|
Particular Values
L(2) |
≈ |
1.56709+1.88755i |
L(21) |
≈ |
1.56709+1.88755i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−9.14+6.42i)T |
| 7 | 1+(−14.8−11.0i)T |
good | 2 | 1+(−0.230−0.0120i)T+(7.95+0.836i)T2 |
| 3 | 1+(−6.35−7.84i)T+(−5.61+26.4i)T2 |
| 11 | 1+(30.1−6.40i)T+(1.21e3−541.i)T2 |
| 13 | 1+(−39.6−20.2i)T+(1.29e3+1.77e3i)T2 |
| 17 | 1+(23.6+61.4i)T+(−3.65e3+3.28e3i)T2 |
| 19 | 1+(−0.806−7.67i)T+(−6.70e3+1.42e3i)T2 |
| 23 | 1+(4.70−89.8i)T+(−1.21e4−1.27e3i)T2 |
| 29 | 1+(80.6−110.i)T+(−7.53e3−2.31e4i)T2 |
| 31 | 1+(−28.6+64.3i)T+(−1.99e4−2.21e4i)T2 |
| 37 | 1+(−9.88+6.42i)T+(2.06e4−4.62e4i)T2 |
| 41 | 1+(−60.6+19.6i)T+(5.57e4−4.05e4i)T2 |
| 43 | 1+(179.+179.i)T+7.95e4iT2 |
| 47 | 1+(61.7+23.6i)T+(7.71e4+6.94e4i)T2 |
| 53 | 1+(−494.+400.i)T+(3.09e4−1.45e5i)T2 |
| 59 | 1+(−32.2+35.8i)T+(−2.14e4−2.04e5i)T2 |
| 61 | 1+(−539.+485.i)T+(2.37e4−2.25e5i)T2 |
| 67 | 1+(−870.+334.i)T+(2.23e5−2.01e5i)T2 |
| 71 | 1+(−663.−481.i)T+(1.10e5+3.40e5i)T2 |
| 73 | 1+(−573.+882.i)T+(−1.58e5−3.55e5i)T2 |
| 79 | 1+(−60.3−135.i)T+(−3.29e5+3.66e5i)T2 |
| 83 | 1+(−74.9+473.i)T+(−5.43e5−1.76e5i)T2 |
| 89 | 1+(712.+791.i)T+(−7.36e4+7.01e5i)T2 |
| 97 | 1+(40.3+254.i)T+(−8.68e5+2.82e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.00474300185756091876008448575, −11.24679335044902342613729932270, −10.12180191430162074077723839738, −9.375861895655212551460249562984, −8.754049725336695059477943471054, −8.048527640192367537859413955712, −5.34771706550116451563354158001, −4.95716168550239782445649668723, −3.72503430188512512783422327999, −2.15635115284315395791236502234,
1.06368100613493993662943829206, 2.46684127015152994724996782479, 3.80431498962464488614268317916, 5.71854915594240041138618825599, 6.90576932518495189248406243550, 8.122708402443772609680378808972, 8.472941007584600804862781709604, 9.764242945550491825945769084294, 10.94876361095732128275929655220, 12.52243540707160588388467882004