L(s) = 1 | + (−3.65 − 0.191i)2-s + (−3.56 − 4.40i)3-s + (5.37 + 0.565i)4-s + (−7.45 − 8.33i)5-s + (12.2 + 16.7i)6-s + (5.89 + 17.5i)7-s + (9.37 + 1.48i)8-s + (−1.07 + 5.04i)9-s + (25.6 + 31.9i)10-s + (45.0 − 9.57i)11-s + (−16.7 − 25.7i)12-s + (34.9 + 17.8i)13-s + (−18.1 − 65.3i)14-s + (−10.1 + 62.5i)15-s + (−76.3 − 16.2i)16-s + (19.9 + 51.9i)17-s + ⋯ |
L(s) = 1 | + (−1.29 − 0.0677i)2-s + (−0.686 − 0.848i)3-s + (0.672 + 0.0706i)4-s + (−0.666 − 0.745i)5-s + (0.830 + 1.14i)6-s + (0.318 + 0.948i)7-s + (0.414 + 0.0656i)8-s + (−0.0397 + 0.186i)9-s + (0.811 + 1.00i)10-s + (1.23 − 0.262i)11-s + (−0.401 − 0.618i)12-s + (0.746 + 0.380i)13-s + (−0.346 − 1.24i)14-s + (−0.174 + 1.07i)15-s + (−1.19 − 0.253i)16-s + (0.284 + 0.741i)17-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(−0.185+0.982i)Λ(4−s)
Λ(s)=(=(175s/2ΓC(s+3/2)L(s)(−0.185+0.982i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
−0.185+0.982i
|
Analytic conductor: |
10.3253 |
Root analytic conductor: |
3.21330 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :3/2), −0.185+0.982i)
|
Particular Values
L(2) |
≈ |
0.378484−0.456829i |
L(21) |
≈ |
0.378484−0.456829i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(7.45+8.33i)T |
| 7 | 1+(−5.89−17.5i)T |
good | 2 | 1+(3.65+0.191i)T+(7.95+0.836i)T2 |
| 3 | 1+(3.56+4.40i)T+(−5.61+26.4i)T2 |
| 11 | 1+(−45.0+9.57i)T+(1.21e3−541.i)T2 |
| 13 | 1+(−34.9−17.8i)T+(1.29e3+1.77e3i)T2 |
| 17 | 1+(−19.9−51.9i)T+(−3.65e3+3.28e3i)T2 |
| 19 | 1+(3.07+29.2i)T+(−6.70e3+1.42e3i)T2 |
| 23 | 1+(−1.05+20.1i)T+(−1.21e4−1.27e3i)T2 |
| 29 | 1+(−159.+218.i)T+(−7.53e3−2.31e4i)T2 |
| 31 | 1+(−50.0+112.i)T+(−1.99e4−2.21e4i)T2 |
| 37 | 1+(−12.2+7.98i)T+(2.06e4−4.62e4i)T2 |
| 41 | 1+(−8.43+2.74i)T+(5.57e4−4.05e4i)T2 |
| 43 | 1+(140.+140.i)T+7.95e4iT2 |
| 47 | 1+(−28.8−11.0i)T+(7.71e4+6.94e4i)T2 |
| 53 | 1+(−376.+305.i)T+(3.09e4−1.45e5i)T2 |
| 59 | 1+(181.−201.i)T+(−2.14e4−2.04e5i)T2 |
| 61 | 1+(−204.+184.i)T+(2.37e4−2.25e5i)T2 |
| 67 | 1+(−332.+127.i)T+(2.23e5−2.01e5i)T2 |
| 71 | 1+(−562.−408.i)T+(1.10e5+3.40e5i)T2 |
| 73 | 1+(473.−729.i)T+(−1.58e5−3.55e5i)T2 |
| 79 | 1+(500.+1.12e3i)T+(−3.29e5+3.66e5i)T2 |
| 83 | 1+(110.−699.i)T+(−5.43e5−1.76e5i)T2 |
| 89 | 1+(368.+409.i)T+(−7.36e4+7.01e5i)T2 |
| 97 | 1+(193.+1.22e3i)T+(−8.68e5+2.82e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.67345903677030602000470471197, −11.32644442786332927576842783226, −9.700699296583003574686203377875, −8.704980351279434287496856677042, −8.215649147852320810140586481138, −6.89917913859799221630545944404, −5.85871352352208008014374521800, −4.21898794463199620947518956340, −1.65058690429350924241670801204, −0.63336229715154040190483129029,
1.05622610383158196512504936737, 3.69940158688977874821531717367, 4.73671838827613333204018347146, 6.59867961872785414921219949651, 7.47286236245063476821324831228, 8.524620130728443113378565716023, 9.755250873058545779333170417421, 10.51986360993042396903117970042, 11.04611427077669010722181158146, 11.93848911306117597130812144048