Properties

Label 2-175-175.103-c3-0-21
Degree $2$
Conductor $175$
Sign $-0.228 + 0.973i$
Analytic cond. $10.3253$
Root an. cond. $3.21330$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−3.05 − 0.160i)2-s + (−5.77 − 7.12i)3-s + (1.35 + 0.142i)4-s + (−5.21 + 9.88i)5-s + (16.4 + 22.7i)6-s + (7.73 − 16.8i)7-s + (20.0 + 3.17i)8-s + (−11.8 + 55.8i)9-s + (17.5 − 29.3i)10-s + (26.7 − 5.67i)11-s + (−6.81 − 10.4i)12-s + (30.7 + 15.6i)13-s + (−26.3 + 50.1i)14-s + (100. − 19.8i)15-s + (−71.4 − 15.1i)16-s + (18.9 + 49.4i)17-s + ⋯
L(s)  = 1  + (−1.08 − 0.0566i)2-s + (−1.11 − 1.37i)3-s + (0.169 + 0.0178i)4-s + (−0.466 + 0.884i)5-s + (1.12 + 1.54i)6-s + (0.417 − 0.908i)7-s + (0.886 + 0.140i)8-s + (−0.439 + 2.06i)9-s + (0.554 − 0.929i)10-s + (0.732 − 0.155i)11-s + (−0.163 − 0.252i)12-s + (0.656 + 0.334i)13-s + (−0.502 + 0.957i)14-s + (1.73 − 0.342i)15-s + (−1.11 − 0.237i)16-s + (0.270 + 0.705i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.228 + 0.973i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.228 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $-0.228 + 0.973i$
Analytic conductor: \(10.3253\)
Root analytic conductor: \(3.21330\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{175} (103, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :3/2),\ -0.228 + 0.973i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.311973 - 0.393533i\)
\(L(\frac12)\) \(\approx\) \(0.311973 - 0.393533i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (5.21 - 9.88i)T \)
7 \( 1 + (-7.73 + 16.8i)T \)
good2 \( 1 + (3.05 + 0.160i)T + (7.95 + 0.836i)T^{2} \)
3 \( 1 + (5.77 + 7.12i)T + (-5.61 + 26.4i)T^{2} \)
11 \( 1 + (-26.7 + 5.67i)T + (1.21e3 - 541. i)T^{2} \)
13 \( 1 + (-30.7 - 15.6i)T + (1.29e3 + 1.77e3i)T^{2} \)
17 \( 1 + (-18.9 - 49.4i)T + (-3.65e3 + 3.28e3i)T^{2} \)
19 \( 1 + (-1.99 - 18.9i)T + (-6.70e3 + 1.42e3i)T^{2} \)
23 \( 1 + (-5.72 + 109. i)T + (-1.21e4 - 1.27e3i)T^{2} \)
29 \( 1 + (142. - 195. i)T + (-7.53e3 - 2.31e4i)T^{2} \)
31 \( 1 + (-45.9 + 103. i)T + (-1.99e4 - 2.21e4i)T^{2} \)
37 \( 1 + (-146. + 95.2i)T + (2.06e4 - 4.62e4i)T^{2} \)
41 \( 1 + (-190. + 62.0i)T + (5.57e4 - 4.05e4i)T^{2} \)
43 \( 1 + (131. + 131. i)T + 7.95e4iT^{2} \)
47 \( 1 + (-528. - 202. i)T + (7.71e4 + 6.94e4i)T^{2} \)
53 \( 1 + (-229. + 185. i)T + (3.09e4 - 1.45e5i)T^{2} \)
59 \( 1 + (-290. + 322. i)T + (-2.14e4 - 2.04e5i)T^{2} \)
61 \( 1 + (50.4 - 45.4i)T + (2.37e4 - 2.25e5i)T^{2} \)
67 \( 1 + (714. - 274. i)T + (2.23e5 - 2.01e5i)T^{2} \)
71 \( 1 + (785. + 570. i)T + (1.10e5 + 3.40e5i)T^{2} \)
73 \( 1 + (294. - 453. i)T + (-1.58e5 - 3.55e5i)T^{2} \)
79 \( 1 + (-289. - 650. i)T + (-3.29e5 + 3.66e5i)T^{2} \)
83 \( 1 + (-185. + 1.17e3i)T + (-5.43e5 - 1.76e5i)T^{2} \)
89 \( 1 + (-560. - 622. i)T + (-7.36e4 + 7.01e5i)T^{2} \)
97 \( 1 + (223. + 1.40e3i)T + (-8.68e5 + 2.82e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.60902209611710157390517251510, −10.96089828261446936188156410444, −10.35801279968474436237795378865, −8.649183865712433303890623857548, −7.60676527939231334822633168683, −7.04517517413255515053064226435, −6.01303071352815608295236022855, −4.17736095828441301119849252325, −1.68280020015112242628458932690, −0.56223152848605722730800776435, 0.947326209706983411125694190355, 3.98189793627312422619762243252, 4.92921604000620666311505763642, 5.89349013270426208727538948603, 7.72165218974388184020034865983, 9.020534860027581581209959534226, 9.282094891061478872228082564867, 10.38893638677863372299388354816, 11.52956416628500044278422178298, 11.85663878666490521008145081166

Graph of the $Z$-function along the critical line