L(s) = 1 | + (−3.05 − 0.160i)2-s + (−5.77 − 7.12i)3-s + (1.35 + 0.142i)4-s + (−5.21 + 9.88i)5-s + (16.4 + 22.7i)6-s + (7.73 − 16.8i)7-s + (20.0 + 3.17i)8-s + (−11.8 + 55.8i)9-s + (17.5 − 29.3i)10-s + (26.7 − 5.67i)11-s + (−6.81 − 10.4i)12-s + (30.7 + 15.6i)13-s + (−26.3 + 50.1i)14-s + (100. − 19.8i)15-s + (−71.4 − 15.1i)16-s + (18.9 + 49.4i)17-s + ⋯ |
L(s) = 1 | + (−1.08 − 0.0566i)2-s + (−1.11 − 1.37i)3-s + (0.169 + 0.0178i)4-s + (−0.466 + 0.884i)5-s + (1.12 + 1.54i)6-s + (0.417 − 0.908i)7-s + (0.886 + 0.140i)8-s + (−0.439 + 2.06i)9-s + (0.554 − 0.929i)10-s + (0.732 − 0.155i)11-s + (−0.163 − 0.252i)12-s + (0.656 + 0.334i)13-s + (−0.502 + 0.957i)14-s + (1.73 − 0.342i)15-s + (−1.11 − 0.237i)16-s + (0.270 + 0.705i)17-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(−0.228+0.973i)Λ(4−s)
Λ(s)=(=(175s/2ΓC(s+3/2)L(s)(−0.228+0.973i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
−0.228+0.973i
|
Analytic conductor: |
10.3253 |
Root analytic conductor: |
3.21330 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :3/2), −0.228+0.973i)
|
Particular Values
L(2) |
≈ |
0.311973−0.393533i |
L(21) |
≈ |
0.311973−0.393533i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(5.21−9.88i)T |
| 7 | 1+(−7.73+16.8i)T |
good | 2 | 1+(3.05+0.160i)T+(7.95+0.836i)T2 |
| 3 | 1+(5.77+7.12i)T+(−5.61+26.4i)T2 |
| 11 | 1+(−26.7+5.67i)T+(1.21e3−541.i)T2 |
| 13 | 1+(−30.7−15.6i)T+(1.29e3+1.77e3i)T2 |
| 17 | 1+(−18.9−49.4i)T+(−3.65e3+3.28e3i)T2 |
| 19 | 1+(−1.99−18.9i)T+(−6.70e3+1.42e3i)T2 |
| 23 | 1+(−5.72+109.i)T+(−1.21e4−1.27e3i)T2 |
| 29 | 1+(142.−195.i)T+(−7.53e3−2.31e4i)T2 |
| 31 | 1+(−45.9+103.i)T+(−1.99e4−2.21e4i)T2 |
| 37 | 1+(−146.+95.2i)T+(2.06e4−4.62e4i)T2 |
| 41 | 1+(−190.+62.0i)T+(5.57e4−4.05e4i)T2 |
| 43 | 1+(131.+131.i)T+7.95e4iT2 |
| 47 | 1+(−528.−202.i)T+(7.71e4+6.94e4i)T2 |
| 53 | 1+(−229.+185.i)T+(3.09e4−1.45e5i)T2 |
| 59 | 1+(−290.+322.i)T+(−2.14e4−2.04e5i)T2 |
| 61 | 1+(50.4−45.4i)T+(2.37e4−2.25e5i)T2 |
| 67 | 1+(714.−274.i)T+(2.23e5−2.01e5i)T2 |
| 71 | 1+(785.+570.i)T+(1.10e5+3.40e5i)T2 |
| 73 | 1+(294.−453.i)T+(−1.58e5−3.55e5i)T2 |
| 79 | 1+(−289.−650.i)T+(−3.29e5+3.66e5i)T2 |
| 83 | 1+(−185.+1.17e3i)T+(−5.43e5−1.76e5i)T2 |
| 89 | 1+(−560.−622.i)T+(−7.36e4+7.01e5i)T2 |
| 97 | 1+(223.+1.40e3i)T+(−8.68e5+2.82e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.60902209611710157390517251510, −10.96089828261446936188156410444, −10.35801279968474436237795378865, −8.649183865712433303890623857548, −7.60676527939231334822633168683, −7.04517517413255515053064226435, −6.01303071352815608295236022855, −4.17736095828441301119849252325, −1.68280020015112242628458932690, −0.56223152848605722730800776435,
0.947326209706983411125694190355, 3.98189793627312422619762243252, 4.92921604000620666311505763642, 5.89349013270426208727538948603, 7.72165218974388184020034865983, 9.020534860027581581209959534226, 9.282094891061478872228082564867, 10.38893638677863372299388354816, 11.52956416628500044278422178298, 11.85663878666490521008145081166