L(s) = 1 | + (−4.89 − 0.256i)2-s + (5.67 + 7.00i)3-s + (15.9 + 1.67i)4-s + (−11.0 + 1.57i)5-s + (−25.9 − 35.7i)6-s + (17.8 − 5.00i)7-s + (−38.9 − 6.16i)8-s + (−11.2 + 52.9i)9-s + (54.6 − 4.85i)10-s + (46.2 − 9.84i)11-s + (78.7 + 121. i)12-s + (77.7 + 39.5i)13-s + (−88.6 + 19.9i)14-s + (−73.7 − 68.5i)15-s + (63.6 + 13.5i)16-s + (−1.45 − 3.79i)17-s + ⋯ |
L(s) = 1 | + (−1.73 − 0.0907i)2-s + (1.09 + 1.34i)3-s + (1.99 + 0.209i)4-s + (−0.990 + 0.140i)5-s + (−1.76 − 2.43i)6-s + (0.962 − 0.270i)7-s + (−1.72 − 0.272i)8-s + (−0.417 + 1.96i)9-s + (1.72 − 0.153i)10-s + (1.26 − 0.269i)11-s + (1.89 + 2.91i)12-s + (1.65 + 0.844i)13-s + (−1.69 + 0.380i)14-s + (−1.26 − 1.18i)15-s + (0.994 + 0.211i)16-s + (−0.0207 − 0.0541i)17-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(−0.155−0.987i)Λ(4−s)
Λ(s)=(=(175s/2ΓC(s+3/2)L(s)(−0.155−0.987i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
−0.155−0.987i
|
Analytic conductor: |
10.3253 |
Root analytic conductor: |
3.21330 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :3/2), −0.155−0.987i)
|
Particular Values
L(2) |
≈ |
0.729415+0.853541i |
L(21) |
≈ |
0.729415+0.853541i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(11.0−1.57i)T |
| 7 | 1+(−17.8+5.00i)T |
good | 2 | 1+(4.89+0.256i)T+(7.95+0.836i)T2 |
| 3 | 1+(−5.67−7.00i)T+(−5.61+26.4i)T2 |
| 11 | 1+(−46.2+9.84i)T+(1.21e3−541.i)T2 |
| 13 | 1+(−77.7−39.5i)T+(1.29e3+1.77e3i)T2 |
| 17 | 1+(1.45+3.79i)T+(−3.65e3+3.28e3i)T2 |
| 19 | 1+(−3.63−34.5i)T+(−6.70e3+1.42e3i)T2 |
| 23 | 1+(−7.51+143.i)T+(−1.21e4−1.27e3i)T2 |
| 29 | 1+(107.−147.i)T+(−7.53e3−2.31e4i)T2 |
| 31 | 1+(58.5−131.i)T+(−1.99e4−2.21e4i)T2 |
| 37 | 1+(72.6−47.1i)T+(2.06e4−4.62e4i)T2 |
| 41 | 1+(30.3−9.86i)T+(5.57e4−4.05e4i)T2 |
| 43 | 1+(68.8+68.8i)T+7.95e4iT2 |
| 47 | 1+(198.+76.3i)T+(7.71e4+6.94e4i)T2 |
| 53 | 1+(92.6−75.0i)T+(3.09e4−1.45e5i)T2 |
| 59 | 1+(403.−448.i)T+(−2.14e4−2.04e5i)T2 |
| 61 | 1+(315.−284.i)T+(2.37e4−2.25e5i)T2 |
| 67 | 1+(−301.+115.i)T+(2.23e5−2.01e5i)T2 |
| 71 | 1+(−471.−342.i)T+(1.10e5+3.40e5i)T2 |
| 73 | 1+(−216.+333.i)T+(−1.58e5−3.55e5i)T2 |
| 79 | 1+(411.+925.i)T+(−3.29e5+3.66e5i)T2 |
| 83 | 1+(73.2−462.i)T+(−5.43e5−1.76e5i)T2 |
| 89 | 1+(−328.−364.i)T+(−7.36e4+7.01e5i)T2 |
| 97 | 1+(−83.1−524.i)T+(−8.68e5+2.82e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.80578604442349709788429413218, −10.97558977889748539371305861793, −10.52537121375023669248661143426, −9.086727990714108234426655248520, −8.728404723691379224173631853047, −8.051507080382249264236091742162, −6.79453793544935949794940451257, −4.36595316285152382771143626458, −3.42602419950622478736260337655, −1.50671022065758803929657938531,
0.932390455863758677552950238835, 1.79451606203804622517188300616, 3.55153968590262628846538162774, 6.31046082162699717330461564617, 7.43820277285533410402696230501, 7.988535359315447014482150460998, 8.647155418130342840488174997367, 9.368322944722939701654198024688, 11.21452305077957462067027484365, 11.57390747946365004935016644545