Properties

Label 2-175-175.103-c3-0-20
Degree $2$
Conductor $175$
Sign $-0.155 - 0.987i$
Analytic cond. $10.3253$
Root an. cond. $3.21330$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−4.89 − 0.256i)2-s + (5.67 + 7.00i)3-s + (15.9 + 1.67i)4-s + (−11.0 + 1.57i)5-s + (−25.9 − 35.7i)6-s + (17.8 − 5.00i)7-s + (−38.9 − 6.16i)8-s + (−11.2 + 52.9i)9-s + (54.6 − 4.85i)10-s + (46.2 − 9.84i)11-s + (78.7 + 121. i)12-s + (77.7 + 39.5i)13-s + (−88.6 + 19.9i)14-s + (−73.7 − 68.5i)15-s + (63.6 + 13.5i)16-s + (−1.45 − 3.79i)17-s + ⋯
L(s)  = 1  + (−1.73 − 0.0907i)2-s + (1.09 + 1.34i)3-s + (1.99 + 0.209i)4-s + (−0.990 + 0.140i)5-s + (−1.76 − 2.43i)6-s + (0.962 − 0.270i)7-s + (−1.72 − 0.272i)8-s + (−0.417 + 1.96i)9-s + (1.72 − 0.153i)10-s + (1.26 − 0.269i)11-s + (1.89 + 2.91i)12-s + (1.65 + 0.844i)13-s + (−1.69 + 0.380i)14-s + (−1.26 − 1.18i)15-s + (0.994 + 0.211i)16-s + (−0.0207 − 0.0541i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.155 - 0.987i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.155 - 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $-0.155 - 0.987i$
Analytic conductor: \(10.3253\)
Root analytic conductor: \(3.21330\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{175} (103, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :3/2),\ -0.155 - 0.987i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.729415 + 0.853541i\)
\(L(\frac12)\) \(\approx\) \(0.729415 + 0.853541i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (11.0 - 1.57i)T \)
7 \( 1 + (-17.8 + 5.00i)T \)
good2 \( 1 + (4.89 + 0.256i)T + (7.95 + 0.836i)T^{2} \)
3 \( 1 + (-5.67 - 7.00i)T + (-5.61 + 26.4i)T^{2} \)
11 \( 1 + (-46.2 + 9.84i)T + (1.21e3 - 541. i)T^{2} \)
13 \( 1 + (-77.7 - 39.5i)T + (1.29e3 + 1.77e3i)T^{2} \)
17 \( 1 + (1.45 + 3.79i)T + (-3.65e3 + 3.28e3i)T^{2} \)
19 \( 1 + (-3.63 - 34.5i)T + (-6.70e3 + 1.42e3i)T^{2} \)
23 \( 1 + (-7.51 + 143. i)T + (-1.21e4 - 1.27e3i)T^{2} \)
29 \( 1 + (107. - 147. i)T + (-7.53e3 - 2.31e4i)T^{2} \)
31 \( 1 + (58.5 - 131. i)T + (-1.99e4 - 2.21e4i)T^{2} \)
37 \( 1 + (72.6 - 47.1i)T + (2.06e4 - 4.62e4i)T^{2} \)
41 \( 1 + (30.3 - 9.86i)T + (5.57e4 - 4.05e4i)T^{2} \)
43 \( 1 + (68.8 + 68.8i)T + 7.95e4iT^{2} \)
47 \( 1 + (198. + 76.3i)T + (7.71e4 + 6.94e4i)T^{2} \)
53 \( 1 + (92.6 - 75.0i)T + (3.09e4 - 1.45e5i)T^{2} \)
59 \( 1 + (403. - 448. i)T + (-2.14e4 - 2.04e5i)T^{2} \)
61 \( 1 + (315. - 284. i)T + (2.37e4 - 2.25e5i)T^{2} \)
67 \( 1 + (-301. + 115. i)T + (2.23e5 - 2.01e5i)T^{2} \)
71 \( 1 + (-471. - 342. i)T + (1.10e5 + 3.40e5i)T^{2} \)
73 \( 1 + (-216. + 333. i)T + (-1.58e5 - 3.55e5i)T^{2} \)
79 \( 1 + (411. + 925. i)T + (-3.29e5 + 3.66e5i)T^{2} \)
83 \( 1 + (73.2 - 462. i)T + (-5.43e5 - 1.76e5i)T^{2} \)
89 \( 1 + (-328. - 364. i)T + (-7.36e4 + 7.01e5i)T^{2} \)
97 \( 1 + (-83.1 - 524. i)T + (-8.68e5 + 2.82e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.80578604442349709788429413218, −10.97558977889748539371305861793, −10.52537121375023669248661143426, −9.086727990714108234426655248520, −8.728404723691379224173631853047, −8.051507080382249264236091742162, −6.79453793544935949794940451257, −4.36595316285152382771143626458, −3.42602419950622478736260337655, −1.50671022065758803929657938531, 0.932390455863758677552950238835, 1.79451606203804622517188300616, 3.55153968590262628846538162774, 6.31046082162699717330461564617, 7.43820277285533410402696230501, 7.988535359315447014482150460998, 8.647155418130342840488174997367, 9.368322944722939701654198024688, 11.21452305077957462067027484365, 11.57390747946365004935016644545

Graph of the $Z$-function along the critical line