Properties

Label 2-175-175.103-c3-0-2
Degree $2$
Conductor $175$
Sign $-0.904 - 0.426i$
Analytic cond. $10.3253$
Root an. cond. $3.21330$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−5.09 − 0.267i)2-s + (−3.82 − 4.72i)3-s + (17.9 + 1.88i)4-s + (3.95 + 10.4i)5-s + (18.2 + 25.1i)6-s + (−12.8 + 13.3i)7-s + (−50.7 − 8.03i)8-s + (−2.06 + 9.71i)9-s + (−17.3 − 54.3i)10-s + (21.9 − 4.65i)11-s + (−59.7 − 92.0i)12-s + (33.3 + 16.9i)13-s + (69.0 − 64.6i)14-s + (34.2 − 58.6i)15-s + (115. + 24.4i)16-s + (−29.1 − 75.9i)17-s + ⋯
L(s)  = 1  + (−1.80 − 0.0944i)2-s + (−0.736 − 0.908i)3-s + (2.24 + 0.236i)4-s + (0.353 + 0.935i)5-s + (1.24 + 1.70i)6-s + (−0.693 + 0.720i)7-s + (−2.24 − 0.355i)8-s + (−0.0765 + 0.359i)9-s + (−0.549 − 1.71i)10-s + (0.600 − 0.127i)11-s + (−1.43 − 2.21i)12-s + (0.711 + 0.362i)13-s + (1.31 − 1.23i)14-s + (0.589 − 1.01i)15-s + (1.80 + 0.382i)16-s + (−0.416 − 1.08i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.904 - 0.426i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.904 - 0.426i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $-0.904 - 0.426i$
Analytic conductor: \(10.3253\)
Root analytic conductor: \(3.21330\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{175} (103, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :3/2),\ -0.904 - 0.426i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.0101757 + 0.0453868i\)
\(L(\frac12)\) \(\approx\) \(0.0101757 + 0.0453868i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (-3.95 - 10.4i)T \)
7 \( 1 + (12.8 - 13.3i)T \)
good2 \( 1 + (5.09 + 0.267i)T + (7.95 + 0.836i)T^{2} \)
3 \( 1 + (3.82 + 4.72i)T + (-5.61 + 26.4i)T^{2} \)
11 \( 1 + (-21.9 + 4.65i)T + (1.21e3 - 541. i)T^{2} \)
13 \( 1 + (-33.3 - 16.9i)T + (1.29e3 + 1.77e3i)T^{2} \)
17 \( 1 + (29.1 + 75.9i)T + (-3.65e3 + 3.28e3i)T^{2} \)
19 \( 1 + (-3.31 - 31.5i)T + (-6.70e3 + 1.42e3i)T^{2} \)
23 \( 1 + (-6.55 + 124. i)T + (-1.21e4 - 1.27e3i)T^{2} \)
29 \( 1 + (55.2 - 76.0i)T + (-7.53e3 - 2.31e4i)T^{2} \)
31 \( 1 + (-40.3 + 90.5i)T + (-1.99e4 - 2.21e4i)T^{2} \)
37 \( 1 + (273. - 177. i)T + (2.06e4 - 4.62e4i)T^{2} \)
41 \( 1 + (32.4 - 10.5i)T + (5.57e4 - 4.05e4i)T^{2} \)
43 \( 1 + (-359. - 359. i)T + 7.95e4iT^{2} \)
47 \( 1 + (373. + 143. i)T + (7.71e4 + 6.94e4i)T^{2} \)
53 \( 1 + (164. - 133. i)T + (3.09e4 - 1.45e5i)T^{2} \)
59 \( 1 + (169. - 187. i)T + (-2.14e4 - 2.04e5i)T^{2} \)
61 \( 1 + (630. - 567. i)T + (2.37e4 - 2.25e5i)T^{2} \)
67 \( 1 + (-299. + 115. i)T + (2.23e5 - 2.01e5i)T^{2} \)
71 \( 1 + (541. + 393. i)T + (1.10e5 + 3.40e5i)T^{2} \)
73 \( 1 + (161. - 249. i)T + (-1.58e5 - 3.55e5i)T^{2} \)
79 \( 1 + (371. + 834. i)T + (-3.29e5 + 3.66e5i)T^{2} \)
83 \( 1 + (-224. + 1.41e3i)T + (-5.43e5 - 1.76e5i)T^{2} \)
89 \( 1 + (375. + 417. i)T + (-7.36e4 + 7.01e5i)T^{2} \)
97 \( 1 + (-4.41 - 27.8i)T + (-8.68e5 + 2.82e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.11544210014523139448989464335, −11.51593119728682573402470197407, −10.64719692850452112188614083364, −9.562970897477419168043126532404, −8.816944439013101209948807898710, −7.42063601517254410246112862559, −6.55461339287343896897920120630, −6.13015117302834241932422948995, −2.89568429400487059610575921109, −1.53730171845145895952474750975, 0.04387518902992628005072143432, 1.47599874178453165424476038880, 3.95308734060965433897802337235, 5.62661867928544391276441642574, 6.67454787416918068318559159111, 8.010225229947765486887841159359, 9.101070034993454143601709931932, 9.717908133230563190271249787399, 10.58048050950233108331980518822, 11.20198694664745105408986535760

Graph of the $Z$-function along the critical line